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Abstract—Neuromorphic architectures have been in-
troduced as platforms for energy efficient spiking neural
network execution. The massive parallelism offered by
these architectures has also triggered interest from non-
machine learning application domains. In order to lift
the barriers to entry for hardware designers and appli-
cation developers we present RANC: a Reconfigurable
Architecture for Neuromorphic Computing, an open-
source highly flexible ecosystem that enables rapid
experimentation with neuromorphic architectures in
both software via C++4 simulation and hardware via
FPGA emulation. We present the utility of the RANC
ecosystem by showing its ability to recreate behavior
of the IBM’s TrueNorth and validate with direct com-
parison to IBM’s Compass simulation environment and
published literature. RANC allows optimizing archi-
tectures based on application insights as well as pro-
totyping future neuromorphic architectures that can
support new classes of applications entirely. We demon-
strate the highly parameterized and configurable na-
ture of RANC by studying the impact of architectural
changes on improving application mapping efficiency
with quantitative analysis based on Alveo U250 FPGA.
‘We present post routing resource usage and throughput
analysis across implementations of Synthetic Aperture
Radar classification and Vector Matrix Multiplication
applications, and demonstrate a neuromorphic archi-
tecture that scales to emulating 259K distinct neurons
and 73.3M distinct synapses.

Index Terms—hardware emulation, performance op-
timization, FPGA, design automation, design method-
ology, image recognition, hardware/software co-design,
logic design, neural networks, neural network hard-
ware, neuromorphics.

I. INTRODUCTION

N recent years, neuromorphic computing architectures

have prompted interest from numerous disciplines due
to their implications in understanding biological brain
behavior as well as their efficiency for deploying machine
learning algorithms [1]. Neuromorphic computing archi-
tectures are non-von Neumann architectures that exploit
the strengths of biologically inspired neural networks and
couple together massively parallel computations with low
power execution. These aspects have been demonstrated
successfully for applications such as data classification [2]-
[7], LIDAR and control applications [8], optimization prob-
lems [9], [10], signal processing [11], and even floating-
point arithmetic [12].

In particular, IBM’s TrueNorth [13] and Intel’s
Loihi [14] are canonical examples of architectures that

utilize so-called “leaky-integrate-and-fire” (LIF) neurons
as their baseline neuron model. On top of this, each
platform implements unique features such as stochastic
neuron behavior in TrueNorth or multicast routing in
Loihi, but the fundamental behavior is primarily influ-
enced by the underlying LIF neuron models. In designing
architectures for use in neuromorphic computing, there are
an incredibly large number of configuration parameters
— such as number and precision of weights per neuron,
neuron and axon counts per core, network topology, and
neuron behavior — that are not fundamentally inherent
to the architecture but rather a product of physical
constraints of architectural design. To enable productive
research in these kinds of architectures, there is a need
for an open-source, configurable emulation environment
where hardware engineers and application designers can
investigate performance bottlenecks and explore design
optimizations that stress evaluation of their full hardware-
software stack before committing to silicon.
Fundamentally, such research is not possible with ex-
isting commercial solutions as all existing chips are pre-
sented to the end-user as pre-fabricated ASICs, and the
programmer is restricted to the architecture constraints
when mapping emerging applications. These restrictions
impact the academic research community’s ability to ex-
plore novel ideas without absorbing the costs associated
with manufacturing custom silicon of their own. As such,
the lack of open-source neuromorphic architecture em-
ulation tools has a dampening effect on the research
community’s ability to converge towards the next gener-
ation of neuromorphic architectures. As a point of com-
parison, FPGA architectures have continuously evolved,
since their inception, from homogeneous island-style, 2-
input lookup table-based designs to heterogeneous, 6-input
lookup table-based designs with DSP and memory blocks
to meet the needs of the ever growing application needs.
Open source tools [15] have played a key role in this
progress. We envision that neuromorphic computing is at a
similar crossroads, with a large investment in architectural
research emerging as we continue to reach the limits of
transistor scaling. To facilitate the development of future
neuromorphic platforms, there is a need for a cohesive
suite that enables easy and rapid prototyping of novel
architectures. There is a large body of work on neu-
romorphic architecture research through software based
simulation environments that support a rich set of bio-



logical features [16]—[19]. These software simulation tools
are coupled with a strong drive for compiler designs [20]
that can effectively restructure applications and enable
maximizing resource usage under prefabricated hardware
constraints. We approach this area from the complemen-
tary perspective of designing reconfigurable neuromor-
phic architectures that can be adapted to a variety of
application requirements and enable rich research to be
conducted on fundamental questions about applications
and architectures for neuromorphic computing. To this
end, in this study we propose the following contributions:

o We introduce RANC: a Reconfigurable Architecture
for Neuromorphic Computing. RANC is an open
source software and hardware ecosystem! that seeks
to make neuromorphic architectures widely accessible
to researchers and application developers through a
cohesive programming and testing environment.

o We establish a baseline reconfigurable architecture,
and we demonstrate RANC’s configurability by recre-
ating TrueNorth behaviorally in both C+4 simu-
lation and FPGA emulation environments through
application mapping studies covering classification of
MNIST and EEG images, and vector matrix multi-
plication (VMM) execution.

o« We reveal application-specific bottlenecks arising
from architectural constraints that require applica-
tion developers to take inefficient implementation ap-
proaches through architecture-specific workarounds
and demonstrate this claim with case studies on VMM
and convolutional neural network execution.

¢ Driven by these application bottlenecks, we propose
architectural modifications that span neuron behavior
and hardware configuration changes and exemplify
the capability of RANC to enable rich architectural
trade studies in the area of neuromorphic comput-
ing. Together, these changes demonstrate the massive
efficiencies to be gained in exploring alternative or
heterogeneous neuromorphic architectures.

A preliminary version of this work appeared in the
“Reconfigurable Architectures Workshop (RAW 2020)7 [21]
where we presented a baseline FPGA emulation platform
implemented on a Xilinx Zynq Ultrascale+ ZCU102 with
a focus on FPGA specific design decisions and evaluated
its ability to recreate TrueNorth via case studies involving
MNIST and VMM. In this paper, we expand the prelimi-
nary work with the following contributions:

e We expand RANC to a full-stack neuromorphic re-
search platform by integrating a software simulation
and library stack on top of the previous emulator.

o We develop software and hardware support in the
RANC ecosystem for seamless deployment onto Xil-
inx Alveo datacenter-scale FPGAs.

o We present a detailed architectural discussion on
RANC’s ability to replicate TrueNorth.

o We extensively verify previous results regarding recre-
ation of TrueNorth in RANC by extending MNIST

ISource available at https://ua-rcl.github.io/RANC
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Fig. 1. High level architectural overview of RANC components.

verification to 9 and 30 core network based imple-
mentations and expanding this verification to include
EEG image classification.

o We improve evaluations on core RANC components
through cycle-by-cycle analysis of VMM execution,
expose and enable optimizations that are only pos-
sible with architectural customization.

o We demonstrate the utility of RANC in exploring
architectures with heterogeneous crossbar configura-
tions for convolution using Synthetic Aperture Radar
(SAR) and CIFAR-10 image classifications.

o We thoroughly explore scalability on the Alveo U250
and demonstrate RANC’s ability to emulate in hard-
ware as many as 259K neurons and 73.3M synapses.

o We present an exhaustive look at other neuromorphic
computing environments and discuss RANC’s role.

In the next section, we will present an overview of each

component in the RANC architecture, and we will discuss
usage of the simulation and emulation environments.

II. RANC ECOSYSTEM
A. Architectural Components

As neuromorphic architectures are designed to mimic
the behavior of biological neurons in the brain, the primary
data unit is the “spike”, which is typically modeled as a
Dirac delta function occurring as a part of a time series.
In digital neuromorphic architectures, spikes are usually
encoded as either a digital 1 or 0. These spikes are sent to
neuron units that then react accordingly by either produc-
ing more spikes or remaining dormant based on configura-
tion parameters. Individual neuron units communicate by
sending each other spikes, and in this way, computation
may be performed over time by sending carefully crafted
sequences of spikes into a richly connected network of
neuron units and observing the resulting behavior.

The RANC environment, with its software simulation
and hardware emulation flow, supports the key operations
of neuromorphic architectures and is highly parameter-
ized with configurable components allowing application
engineers and hardware architects to experiment with
application mapping and hardware tuning concurrently.
The overall platform shown in Figure 1 is a 2D mesh-
based network-on-chip (NoC) composed of cores with
five key components: neuron block, core controller, core
SRAM, packet router, and packet scheduler. This set of



TABLE 1
PARAMETERS AND VARIABLES USED THROUGHOUT THE RANC
ECOSYSTEM AND ARCHITECTURAL DIAGRAMS.

Type ‘ Symbol Description
v;(t) voltage potential for neuron j at tick ¢
v;.r positive threshold for neuron j
Uj_ negative threshold for neuron j
g w;.“ weight k for neuron j
o:cé £; leak value for neuron j
g r;.r positive reset value for neuron j
% rj_ negative reset value for neuron j
Z s (t) spike value on axon i at time ¢
Ti axon type for axon
a; the #t" axon in a core
n; the jt* neuron in a core
Sfrick frequency of the global NoC tick
g feore frequency of a single RANC core
% dimg X dimension of NoC grid
g dimy Y dimension of NoC grid
ZO dim[r* Max range of NoC packet in X direction
dimj*® Max range of NoC packet in Y direction
o N(a) number of axons per core
‘é c% N(n) number of neurons per core
Zs E N(t) number of tick slots per core
N(w) number of weights supported per neuron
B(a) bits per axon index (i.e. loga(N(a)))
= B(n) bits per neuron index (i.e. log2(N(n)))
o c% B(t) bits to index a single tick (i.e. loga(N(t)))
E Dc:é B(w) bits to represent a weight
A B(v) bits to represent a potential value
B(¢) bits to represent a leak value

new_neuron vj(t-1)

Fig. 2. Design of the neuron block used in RANC.

five components is derived by generalizing and parame-
terizing components of IBM’s TrueNorth [13] architecture
in an effort to ensure RANC provides a well-tested set
of baseline neuromorphic functionalities. The fundamental
neuron computational behaviors are implemented via the
neuron block, and each neuron block is coupled to a core
controller and core SRAM that coordinates data transfers
and stores configuration parameters respectively. Output
spikes from each neuron are routed between neuron blocks
via the packet router, and incoming spikes are scheduled
for computation via the packet scheduler. Design-level syn-
chronization is accomplished via a global synchronization
signal or “tick” that ensures all cores stay in lockstep
throughout their computations. In this way, these five core
components are able to work together to form a foun-
dational basis for neuromorphic computing architectural
research while leaving flexibility to alter the fine-grained
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Fig. 3. State machine defining behavior of the core controller.

behavior of each unit independently from the rest of the
design. In the following subsections, we will discuss each
component in detail. All design parameters associated with
RANC are defined in Table I. We begin by discussing the
functionality of a single core whose behavior is captured
by the interactions of the neuron block, core controller, and
core SRAM. We then discuss inter-core communication
through the packet router and packet scheduler.

1) Neuron Block: As the primary computational com-
ponent, the neuron block emulates a crossbar with N(a)
input “axons” connected to N(n) output “neurons”, where
N(a) and N(n) are parameters specified by the user.
With this, a single mneuron block can emulate a total
of N(a) x N(n) synaptic connections. Additionally, each
input axon is associated with a hardcoded index that
specifies the location of its associated weight value within
the core SRAM. To emulate each of these neurons, each
neuron block contains a basic datapath for mimicking the
voltage characteristics of an LIF neuron model. At a high
level, this datapath shown in Figure 2 works by having
each neuron maintain a signed running sum known as its
neuron potential (NP). In each cycle, this neuron potential
is either incremented, decremented, or maintained based
on a number of potential events. For each input spike
that a neuron receives on one of its axons, the signed
weight associated with that axon is accumulated with the
current neuron potential. If, at the end of this process, a
neuron is above its user defined maximum threshold, then
that neuron outputs a spike to its connections and the
potential either resets to a static value or subtracts a user-
defined value. If, alternatively, a neuron is below its user
defined minimum threshold, that neuron resets similarly
either back to a static value or it adds a user-defined
value to the potential without emitting a spike. Finally,
if the neuron value does not cross either the minimum or
maximum threshold, it simply “leaks” or decays by a user-
specified value. At the end of its computation, a neuron’s
final potential value is written into the core SRAM.

2) Core Controller: The core controller, as shown in
Figure 3, works with the neuron block datapath to co-
ordinate memory accesses and data transfers to ensure



Algorithm 1 Dimension-order/“XY” packet routing

1: function ROUTE(packet, core, dx, dy)

2 if dx < 0 then

3 route(packet, core.east, dx+1, dy)
4 else if dx > 0 then

5: route(packet, core.west, dx—1, dy)
6 else if dy < 0 then

7 route(packet, core.south, 0, dy+1)
8 else if dy > 0 then

9: route(packet, core.north, 0, dy—1)
10: else

// dx ==

// dx ==0&& dy == 0
11: core.accept(packet)
12: end if

13: end function

Spike packet Cleari Reseti
from routing log>(N(a)) Axon
Scheduler Spikes
B(t) s
) SRAM N@)
Tick offset
(SpikePacket[B(0)-1:0] B = Scheduler
Counter Frror
Write Enable  |[B(1)-1:0]

Fig. 4. Design of the packet scheduler component

that all N(n) neurons inside the core are being emu-
lated faithfully. For each neuron in the neuron block, the
core controller iterates over its associated input axons.
Information regarding the spikes sent to this neuron are
retrieved from the core SRAM, and for each axon that
delivers a spike, the core controller checks if the axon-
neuron crossbar contains a connection at this location. If a
connection is present, the weight associated with that axon
is sent to the neuron block datapath for accumulation into
the neuron potential. Once all input spikes are processed
for a given neuron, the controller checks if this neuron has
produced an output spike. If it has, the controller sends a
“spike valid” signal to the router for it to enqueue this
spike for delivery to its destination. Once all N(a) x N(n)
synaptic connections are processed by the core controller,
it proceeds to an idle state until the next synchronization
tick occurs. If the synchronization signal occurs before
computation completes (i.e. fyckr is too fast), an error flag
is raised to notify the user that output may be corrupted.
3) Core SRAM: All user-supplied configuration param-
eters that are relevant for the configuration of each neuron
in a single core are stored in the core SRAM. 1t is defined
by a matrix of N(n) rows by B columns, where B is the
number of bits required to encode all parameters for a sin-
gle neuron (which varies based on user parameter choices),
and there are N(n) data words for all N(n) neurons. All
parameters for each neuron (weights, connections, current
potential, reset values, thresholds, leak value, destination
of generated spikes) are stored as a single word in the core
SRAM. As such, each neuron requires only one read per
tick from the core SRAM. Each of these parameters are
assigned to their respective inputs in Figure 2, and the
neuron processes all N(a) input axons through states 3
to 6 of Figure 3. After computation is complete, the final
v;(t) potential value is updated and the modified word of
the core SRAM is committed back to memory in a single
write, after which the core controller proceeds on to the
next neuron or to an idle state waiting for the next tick.

4) Packet Router: With the operation of a single core
of neurons defined, the packet router ensures that output
spikes generated by the neurons in this core can be routed
to their destination whether that is back to another input
axon in the same core or elsewhere in the NoC. Basic
operation is illustrated in Algorithm 1. When a neuron
produces a spike, the destination for this spike is retrieved
from the core SRAM and used to construct a packet
for routing through the mesh. A packet’s destination is
encoded as an offset relative to the producer core, and it
follows a dimension-order/“XY” routing convention where
north and east are positive while west and south are nega-
tive. Each packet consists of four key fields: signed relative
dr and dy offsets to route the packet to its destination
core, an axon index to identify the destination axon, and
a delivery tick offset to identify which tick, relative to the
current time, the scheduler should schedule this spike for
delivery. These last two fields are explored in more detail
in discussions in Section II-A5. If, in the course of routing,
a destination core is unable to accept an input packet and
backpressure must be applied, the router is responsible
for further propagating such backpressure to other cores
in the system. Backpressure is applied by giving the
receiving core control over enabling reads on the sending
core’s FIFO. If the receiving core is unable to accept,
the sending core’s FIFO will eventually fill, stall, and
likewise propagate to its neighbors. Each core can route
to any other core within the x,y-ranges [-(dim}")/2,
(dzmgq/“y"”)/Q - 1)]. As such, range is a function of the user-
specified dimy'** and dimy'** parameters.

5) Packet Scheduler: When a packet arrives at its des-
tination, the corresponding core’s scheduler — shown in
Figure 4 — is responsible for scheduling of this input spike
for processing. An incoming packet is decomposed into two
values: the first value is a user-defined offset for how long
this input spike should wait before being processed by the
core (up to a user-configurable maximum of N(t) ticks),
and the second value is a logs (N (a))-bit field that indicates
for which axon this spike is intended. Both values are used
to index into an auxiliary memory of size N(a) x N(¥)
and write a spike, where the first axis is the destination
axon and the second axis is the time offset for arrival.
Concurrently, the scheduler keeps track of the current time
and, as it cycles through all N(¢) possible time slots, it
feeds in the input spikes to their destination axons for the
core’s neuron block to process. If a packet ever attempts to
write into the current time offset (i.e. a packet arrives too
late), an error flag is thrown and the packet is dropped,
but operation otherwise continues unimpeded.

B. Ecosystem Discussion

The RANC ecosystem is composed of training, software
simulation, and FPGA emulation environments as illus-
trated in Figure 5.

1) TensorFlow Training Environment: The training en-
vironment includes a set of libraries built around Ten-
sorFlow [22] to create RANC-compatible neural networks
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Fig. 5. Training, Testing, and Emulation environment

that target both the simulation and emulation environ-
ments. To map a Spiking Neural Network (SNN) into the
RANC environment, we use the methodology from Esser
et al. [23]. In the methodology by Esser et al. [23], the
layers of the architecture are initialized fully connected,
and weights of +1 are randomly assigned across all the
connections. Then, during backpropogation, rather than
train the weights, synaptic connection probabilities are
maintained as to whether or not a synaptic connection
is present between two neurons. During forward propa-
gation — either during training or in order to output the
final network — these synaptic connection probabilities are
converted to either 0 or 1 based on whether the current
connection probability is below or above 0.5 Effectively,
the result of this training process is a constrained network
containing weights of either 41 if a connection is present
or ( if a connection is not present. Connection probabilities
are constrained to 0 or 1 in forward propagation through-
out training to eliminate quantization error during final
conversion as the network is directly compatible with the
RANC hardware throughout the entire training process.
After training is complete, the training environment con-
verts the finalized network model and input spike patterns
into a format usable by both the software simulation
and FPGA emulation environments. This allows end users
seamlessly map Tensorflow networks to both the C++
simulation and FPGA emulation RANC environments
without necessarily knowing the details of how either work.
2) Software Simulation Environment: The RANC soft-
ware simulator is a tick-accurate simulation of the full
RANC architecture that requires two input files. The
first file is a configuration file that specifies global pa-
rameters for the simulation such as size and dimensions
of the RANC NoC or flags for enabling or disabling
debug logging. The second file specifies the remainder of
the configuration required for proper simulator execution.
This includes the input spikes that will be sent into the
RANC NoC, the threshold, connection, and reset mode
parameters for each neuron, and the core in the NoC
from which “output” will be collected. After launching the
simulator, a trace is collected containing all spikes sent to
the “output core”, which can then be analyzed further to
determine correctness of an application’s behavior.

TABLE II
FEATURE COMPARISON BETWEEN TRUENORTH AND RANC.
| TrueNorth [24] | RANC
Basic Functionalities
Global Synchronous Tick 1 kHz Sick
Axon-Dendrite Crossbar 256 x 256 N(a) x N(n)
Weights per Neuron 4 N(w)

Neuron Potential
Reset Potential
Weight Value

Leak Value
Pos./Neg. Threshold

9 bit signed B
9 bit signed B
9 bit signed B
9 bit signed
9/9 bit signed

(v) bit signed
(v) bit signed
(w) bit signed
B(¢) bit signed
B(v) bit signed

Neuron Models

Leaky-Integrate-and-Fire YES YES
Linear Reset YES YES
Stochastic YES NO
Advanced Functionality

Spike/Neuron Processing Parallel Parallel
Synchronicity LAGS! LSGS?

1 Locally Asynchronous, Globally Synchronous
2 Locally Synchronous, Globally Synchronous

3) FPGA Emulation FEnvironment: To utilize the
FPGA emulation environment, we provide an FPGA TP
wizard that allows for specifying a set of memory files
to configure each of the core SRAMs present in a given
design. After this, a design is synthesized and contains
all information about the connections between neurons as
well as their threshold and spiking behaviors. As such, the
IP core can then be deployed into a broader design, with
examples using the Xilinx ZCU102 and Xilinx Alveo U250
FPGAs provided in the project documentation. Spikes are
routed into the network via AXI4 communication and
results are collected similarly. Output from the FPGA
emulation can be directly compared tick-by-tick against
the output from the simulation environment, and in the
scope of SNNs, final classification decisions from both can
be validated against output from the Tensorflow environ-
ment.

C. Architectural Extensibility

One of the primary goals for RANC is ensuring that
it is easy to extend in both the software simulation
and FPGA emulation environments. Each component is
modeled independently from the others, and as long as
the necessary interfaces are preserved, internal behaviors
can be changed without affecting the remainder of the
system. In the FPGA environment in particular, RANC
produces an AXI-compatible IP core that can easily be
integrated with other pre/post-processing methodologies.
If alternative neuron behaviors are desired, as long as the
neuron block can receive and output potential values and
spikes, the internal behavior can be trivially adjusted. If
customizations are required in the Router such as using
a different NoC topology, this can be accommodated by
either changing the logic that modifies the dx and dy
packet coordinate bits or through physically changing
the for-loops that instantiate and connect the cores. To
illustrate the utility of this environment for emulating rich



neuromorphic architectures, here we end this discussion
by noting that through only the choice of configuration
parameters, it is possible to behaviorally emulate IBM’s
well-established TrueNorth architecture within RANC.
TrueNorth cores each consist of 256 input axons and 256
output neurons with four 9-bit weight values per neuron.
Individual spikes can be routed via relative offset to
anywhere within a 256x256 core radius around the spiking
core, and their arrivals can be scheduled to occur with up
to a 16 tick offset relative to the current tick. As all of
these values are parameters in the RANC hardware design,
as shown in Table II, we are able to configure RANC to
emulate TrueNorth with minimal effort.

As TrueNorth has a rich availability of published liter-
ature that details its behavioral and performance charac-
teristics, in Section III, we perform a number of validation
studies between TrueNorth and its emulation in the RANC
environment across traditional neuromorphic applications
such as SNN execution and non-traditional applications
such as VMM execution.

III. ARCHITECTURAL VERIFICATION

In this section, we evaluate RANC’s ability to behav-
iorally emulate IBM’s TrueNorth architecture. We begin
by discussing the Xilinx Alveo-based runtime framework
used for conducting each of these experiments. Then, we
recreate two TrueNorth-based case studies described by
Yepes et al. [25] on the MNIST and EEG datasets. As
these both involve mapping SNNs to RANC, we utilize
RANC’s Tensorflow integration as shown in Figure 5 to
create networks and map them to both our simulation
and emulation environments. Once the network is trained
for a given set of architectural parameters and training
data, we output four files: the simulation configuration,
FPGA configuration, input spikes, and the Tensorflow test
predictions. The simulation and FPGA configurations con-
tain the information described in Sections I1I-B2 and II-B3.
Output from both the FPGA emulation and software
simulation are then compared against the Tensorflow test
predictions and potentially output from other simulation
environments — such as IBM’s Compass — for further ver-
ification. After this, we conclude by presenting a decisive
means of validating our architecture against TrueNorth via
tick-by-tick analysis of a deterministic algorithm: VMM.

A. Ezxperimental Setup

The RANC ecosystem includes a large library of wrap-
per scripts that help to enable efficient workflows for
deploying and testing new architectures. In this work,
we present results only from the Alveo U250 runtime
environment. Experiments with the Alveo were conducted
on a system running Ubuntu Server 18.04.4 LTS with
Linux kernel 4.15.0-91 and Xilinx Runtime (XRT) ver-
sion 2.3.1301. RANC integration with Alveo was per-
formed through use of “RTL Kernels” in the Xilinx Vitis
2019.2 development environment, and workloads were pro-
grammed and dispatched with the XRT OpenCL bindings

TABLE III
REsuLTS OF THE MNIST EXPERIMENTS

| 9 Core Network | 30 Core Network

Encoding

Window RANC [25] RANC [25]
1 96.65 93.73 £ 0.21 97.45 95.36 £ 0.17
2 97.19 96.07 £+ 0.20 97.99 96.45 + 0.12
4 97.40 97.28 £+ 0.11 98.26 97.38 £ 0.10
8 97.06 97.75 £ 0.06 98.11 97.70 £ 0.04
16 97.55 97.95 £+ 0.08 98.14 97.88 £+ 0.05
TABLE IV
REsuLTs OF THE EEG EXPERIMENTS
Encoding Window | RANC | [25]
1 67.70 62.36 + 5.27
2 62.11 66.96 + 4.22
4 65.84 70.06 £ 3.98
8 75.16 72.36 £+ 2.92
16 75.78 75.96 + 2.17

as shown in examples in the RANC repository. For neu-
ral network workloads, the networks were implemented,
trained, and converted for use in the RANC simulation and
emulation environments using the automatic conversion
tools described in Section II-B1.

B. MNIST Verification

Starting with the MNIST case study, the architectures
used are equivalent to the 9 and 30 core networks presented
in Yepes et al. [25]. In these experiments, N(n) = N(a) =
256 to enable comparison with TrueNorth-based results.
As discussed in Yepes et al. [25], MNIST images are
28 x 28, and this exceeds the maximum input size of a
single core, so they partition the input into windows of
either 16x16=256 or 8x8=64 and feed it into multiple
cores. The input images are encoded via burst encoding
over an input window ranging from 1 to 16 ticks. Training
is performed with dropout between the layers and the
optimizer is not specified. As such, we choose to utilize the
Adam optimizer [26]. No data normalization is applied.
We present our comparison with the results of Yepes et
al. [25] in Table III, and we find that, across the board,
we have comparable performance to published work. We
attribute slight deviations in network accuracy to our
particular choice of the Adam optimizer and the stochastic
nature of neural network training.

C. FEEG Verification

After MNIST, we verified our environment against the
EEG dataset results also presented by Yepes et al. [25]
using an identical network topology. The training and
testing methodologies applied are also equivalent to the
MNIST verification above, and the results are displayed
in Table IV. We find that for all burst-encoding windows
tested, our networks achieve quite comparable accuracy
with respect to the published results. Large variability in
achieved accuracy can be attributed to the limited size
of the EEG dataset (1109 usable samples) coupled with
variations in train-test dataset splitting. The outcomes



of these experiments give us confidence in our archi-
tecture’s ability to replicate the commercial TrueNorth
architecture, but decisive validation, without having access
to the exact network model parameters used in these
experiments, is impossible. As such, we conclude our
architectural verification by mapping VMM, a known
deterministic application, whose output can be reliably
compared tick-by-tick with the source architecture.

D. VMM Verification

To present a deterministic verification of our architec-
ture’s ability to replicate TrueNorth, we implement signed
VMM in RANC by using Fair’s method of mapping VMM
on TrueNorth [27].

VMM is an ideal application for validating our em-
ulation environment as each problem instance has a
unique, deterministic output, and its implementation on
TrueNorth requires spreading computation across a net-
work of interconnected cores and running for hundreds of
ticks. To produce equivalent behavior, each of these in-
terconnected RANC cores must produce the same output
spikes on the same tick as TrueNorth.

We use a 9-bit signed VMM formulation, and validate
the behavioral functionality of both our emulation and
simulation environments against an equivalent implemen-
tation in IBM’s Compass [29] environment. We created
100 random matrix-vector pairs with the matrices ranging
from 2x3 to 8x8 and the vectors sized appropriately for
their corresponding matrix consisting of random 9-bit
signed integers. Each of these matrix-vector pairs was
mapped to Compass, the RANC simulator, and the RANC
emulator using the method proposed by Fair et al. [26].
Across all instances, we found a one-to-one match not only
in the decoded VMM output but also in tick-level timing
of when various outputs were observed. In conclusion,
we are able to emulate TrueNorth in the RANC ecosys-
tem using traditional SNN applications (MNIST, EEG)
and non-traditional deterministic application (VMM). In
the following section we present detailed case studies on
RANC’s ability to drive neuromorphic architecture explo-
ration through VMM and convolution based classification.

IV. CASE STUDIES

With the functional validation of our architecture com-
plete, we exploit the modularity of the RANC ecosystem
by exploring methods through which an architect or ap-
plication engineer can incrementally change the behavior
of the hardware based on application bottlenecks — a task
infeasible for researchers using either TrueNorth or Loihi
due to the fixed nature of the chips. We begin with an
in depth analysis of mapping VMM onto a neuromorphic
architecture, and we then demonstrate VMM execution by
conducting a tick-by-tick analysis and visually monitoring
the state of key components. This detailed analysis allows
us not only to understand the interactions between pro-
cessing and routing elements essential for realizing neuro-
morphic behavior but also expose optimization opportuni-
ties. We then expand our architectural optimization efforts
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towards exploring the use of customized convolutional
cores in improving neuron utilization, axon utilization, and
hardware throughput via case studies on synthetic aper-
ture radar (SAR) and CIFAR-10 image classification. By
again exploiting the ability to reconfigure components for
each application, we demonstrate that a modified RANC
architecture vastly reduces resources required for mapping
convolutional network layers by allowing each core to be
fully utilized. Finally, we conclude our case studies with
FPGA based measurements on resource usage, scalability,
and path delay for a variety of architectural configurations.

A. VMM Optimization

In the following subsection, we illustrate the resource
utilization inefficiencies that are present when dealing with
signed VMM execution on TrueNorth, and we demonstrate
how RANC’s neuron datapath resolves this inefficiency. For
interested or unfamiliar readers, a preliminary background
on the non-signed, positive-only VMM mapping approach
taken by Fair et al. [27] is provided in Appendix A.

1) Complications of signed VMM: As the rate encoded
input spikes lack sign, to make signed VMM mappable to
the TrueNorth, Fair et al. [27] divides axons and neurons
into positive and negative groups, where positive and
negative input spikes are routed to their respective groups
allowing each group to represent positive and negative
outputs from respective connected axons. We illustrate
Fair’s representation using Figure 6 based on an example
multiplication of input vector [-1 3] with the input matrix
[2 -3]T. The single crossbar with 2 axons and 2 neurons is
replaced with four crossbars in order to cover all possible
combinations of positive and negative representations of
axons and neurons.

To map this approach to TrueNorth, additional changes
are needed, however. As the neuron datapath in TrueNorth
uses a > comparison in positive threshold comparison
but a < comparison on the negative threshold, Fair et
al. [27] has shown that additional feedback systems are
needed to correct behaviors associated with this asymmet-
ric thresholding. Uncorrected, this asymmetry allows the
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potential value of a neuron to remain negative when it
should be otherwise reset to zero. Correct output can only
be achieved with additional feedback that reroutes spikes
back to the core and drives the potential back to zero.

This feedback concept is realized by duplication of the
neurons, and grouping them into positive and negative
feedback neurons. We show this duplication in Figure 7,
where feedback neurons route spikes back to a newly
created group of axons within the same core a tick later.
These new axons are divided into groups for their con-
nected positive and negative feedback neurons.

In Figure 7, Axons 0 and 1 (ag and a;) are the positive
and negative input axons, and Neurons 0 and 1 (ng and nq)
are positive and negative neurons respectively. Feedback is
connected by duplicating the ng and ny to ne and ng and
routing them back to as and a3 as positive and negative
feedback channels. The connections aligned with no and ng
are feedback specific connections, which ensure feedback
spikes connect to neurons that have neuron potential of
-1. To illustrate this, a spike is arbitrarily placed on ag.
During the first tick, the spike produces neuron potentials
of [1, -1, 1, -1] for each of the neurons [ng, n1, na, n3l.
The asymmetric thresholds restrict the reset method from
bringing the negative potentials back to zero, producing a
next tick potential of [0, -1, 0, -1] for the neurons. Feedback
corrects asymmetric thresholds through spike loopback.
As ny had a neuron potential > 1, a spike is emitted
and redirected back at ng. During the next tick this spike
connects at ny and ng producing neuron potential of [0, 0,
0, 0]. This works exactly the same if the initial spike were
to occur on a; instead of ag. Additionally, this functions
just as well should there be another spike behind the one
originally set on ag, due to the additive effect of spikes, it
balances out by canceling the negative neuron potential.

The neuron duplication and feedback based workaround
due to architectural constraints is resolved in RANC with
a neuron datapath that supports symmetric threshold
behavior. Replacing < with < for the negative threshold
comparison allows negative potentials to reach zero with-
out having to use feedback, ensuring that a positive input
spike on these neurons is correctly counted.

Fair’s 8x8 VMM implementation is a three core setup on
TrueNorth, where the first core receives the input spikes
representative of the vector by which to multiply. The out-
put of the first core is an unsigned binary representation
of the output vector. Due to the replication overhead for
feedback as illustrated for the 2x2 example in Figure 6, this
core requires 160 axons and 256 neurons for the 8x8 VMM

TABLE V
FPGA RESOURCE UTILIZATION ON ALVEO U250 FOR 9-BIT SIGNED
VMM USING THREE CORES. EACH ROW REPRESENTS A CORE TESTED
WITH RANC-EMULATED IBM TRUENORTH (TN) WITH FEEDBACK,
AND RANC WITH SYMMETRIC THRESHOLD. SECOND CORE REQUIRES
NO FEEDBACK, AND IS PRESENTED FOR COMPLETENESS.

Core LUT RAMyyr FF BRAM Delay (ns)
TNCerel 11500 192 1076 4 3.925
RANCCorel | 1038 48 937 2 3.801
Core2 1559 266 1244 0 3.928
TNCeore3 11200 130 1112 0 3.771
RANCCore3 | 1106 105 1044 0 3.563
Savings(%) | 20.6 52.5 95  50.0 2.9

implementation. The second core contains neurons with
synaptic weights of {8, 4, 2, 1}, which applies weighting
to the binary representation and requires 128 axons and 32
neurons. The final core, which is a 16, 1 weight application,
applies significance to the four most- and four least-
significant bits, as well as performs the summation in order
to generate the final output of the VMM operation. The
third core requires 48 axons and 32 neurons. Therefore,
the 8x8 VMM implementation requires a total of 336 axons
and 320 neurons. Eliminating the feedback system through
symmetric thresholds, leaves behind a 32 axon, 128 neuron
setup for the first core of the VMM implementation as
the 128 feedback neurons and axons can be discarded.
Similarly, the subsequent two cores (magnitude, weight
application) require 128x32 and 32x16 axons and neurons
respectively. Therefore VMM mapping on RANC requires
a total of 192 axons and 176 neurons, reducing the axon
and neuron footprint by 57% and 55% respectively.

In Table V, we compare the FPGA resource utilization
of functionally equivalent signed VMM implementations
on the emulated reference TrueNorth and default RANC
configuration across cores one and three. Core two is
excluded since number of axons and neurons required by
this core are same for both architectures. We use the 1 x 8
vector and 8 X 8 matrix as this VMM problem occupies an
entire core of TrueNorth. We observe the highest saving
in the first core, where signed operations are carried out
with reduction of 30.8% and 75% for LUTs and LUTRAM
respectively. In the third core, we observe relatively less
savings in LUT (7.8%) and LUTRAM (19.2%) usage com-
pared to the first core as the number of axons and neurons
removed is much fewer. Overall, the 55% reduction in
neuron count corresponds to reduction in BRAM and LU-
TRAM usage by 50% and 52.5% respectively. As we reduce
the neuron footprint of the VMM mapping, muxes, adders
and comparators contribute to reduced LUT usage and
the neuron potential register contribute to the LUTRAM
reduction. Without feedback neurons, the 128 axons to
which they were connected are discarded. This decreases
size of the packet scheduler that is entirely mapped onto
LUTRAM. Additionally, removing the feedback reduces
total latency slightly from 11.624ns to 11.292ns (2.9%).

Symmetric behavior of neuron potential thresholds in
RANC eliminates the need for resource duplication based
workaround and allows for improved scalability to process
larger matrix sizes and implement applications that in-



volve VMM operations such as convolution, locally com-
petitive algorithm, or least squares minimization. In the
next case study we demonstrate our ability to customize
RANC for the granularity of convolution operations.

B. Convolution

Mapping convolution onto neuromorphic architectures
is either restricted in size or is often inefficient due to
the need for extensive repetition of input data [3]. From
size point of view, for instance, the best CIFAR10 network
reported by [3] requires 31,492 cores. Given that CIFAR
images are only 32x32, there are scalability challenges for
applications that require processing larger images such
as 512x512 images from the EM segmentation challenge
dataset [28].From inefficiency point of view, studies have
shown that crossbar underutilization is a challenge when
mapping neural network connections to neuromorphic ar-
chitectures [20], [29].

The inefficiency of mapping convolution can be reduced
by increasing the percent of the total image available
within a single core. If the entirety of the image can be
sent to a core, then the need for all axon redundancy
is eliminated and a larger fraction of the core’s neurons
can be used. This is because all possible strides of each
convolutional filter can be calculated as every input is
available for computation. When an image can not fit
entirely within a single core, computations must be split
across multiple cores, and pixels that are shared between
kernels located in different cores must be replicated. An
alternative method for addressing the mapping inefficiency
for convolution could be scaling down the kernel size for
a layer, or increasing feature counts. This approach allows
more strides to be calculated within a single core and
decreases the amount of input data replication required for
the next core. However, network design decisions should
not be forced upon the designer purely due to restrictions
of the deployment hardware. Instead, they should be
guided collectively by insights from both hardware and
software design perspectives to jointly optimize applica-
tion performance and hardware efficiency, and they should
converge to values that enable the application designer to
maximize performance without requiring expensive trade-
offs caused by mismatch in hardware capabilities.

Figure 8 provides an illustration of the convolution
mapping [3] that utilizes a neuron to represent a single
output feature of a convolutional stride, with each con-
nected axon supplying an input value from the image. In
this example, we assume that the image is 4x4, the kernel is
2x2, and each core has 20 axons with 6 neurons. Two axons
are used per input pixel to allow for ternary kernel weights
of -1, 0, or 1. Ternary weights limit this axon configuration
to process a maximum of 10 pixels worth of input data
per core, therefore a core can process a maximum of 3x3
input region that allows for a maximum of 4 cores. Due to
the overlapping regions, only 9 of the 24 total neurons are
utilized in overall. Pixels 6, 7, 10, and 11 are replicated in
all 4 cores. Pixels within the middle of the perimeter of the
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Fig. 8. Example convolution mapping with 4x4 image, 2x2 kernel
and weights of all 1. Kernel strides mapped to a core are indicated
by a matching color. Core 1 calculates output for 4 pixel sets, while
cores 2-4 calculate the remaining 5. The color red denotes where
axon duplication or neuron waste occurs. Core 2 receives 6 pixels
(2,3,6,7,10,11) that are already provided to Core 1. Core 3 contributes
with only one unique convolution (11,12,15,16), where its remaining
three convolution operations are covered by the other cores.

image are replicated twice. Among all 4 cores, unique axon
usage is 40%, and 60% of axons are either unconnected or
receiving a duplicate input.

Adjusting the core input size to accommodate the full
image is infeasible within fixed neuromorphic architectures
as the per-core axon count is a set value across the system,
typically well below the number required for an entire im-
age. The RANC emulator allows the designer to configure
axon and neuron counts per core, which can be tuned to
be a function of the network’s input image size and kernel
parameters. For example, in the provided example above,
a custom convolutional core of 32 axons and 9 neurons
perfectly maps the operation with no waste. Although the
individual core resource usage itself is greater, the same
operation that originally required 4 cores or 80 axons
now uses a single core with 32 axons. While this larger
core would come at the cost of a slower tick rate as the
computations required within the core controller increase,
this tradeoff can be seen as desirable by reducing resources
enough such that many parallel classifiers can be instanti-
ated with the savings. To explore this, in this section, we
utilize RANC’s ability to deploy heterogeneous cores and
propose dedicated convolution cores that reduce the need
for input redundancy. By increasing the axon and neuron
counts per core, we show that we are able to improve axon
utilization without sacrificing the classification accuracy.
For this, we set up a controlled experiment starting with
the RANC architecture defined based on the VMM study
that supports symmetric threshold. We refer to this im-
plementation as the Default configuration. We establish a
common data preparation and network training flow that
is shared between the two configurations, and as such the
only variation occurs on the architecture. By controlling
variation to only be within the architecture, we evaluate
the impact of the proposed heterogeneous core configu-
rations on hardware performance with respect to post-
routing FPGA resource usage, latency, and classification
throughput with networks trained for Synthetic Aperture
Radar (SAR) and CIFAR-10 image classification. We end
by noting that, as these changes affect only architectural
mapping strategies, the network behavior is unchanged,
and as such, classification accuracy is not compromised.
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Fig. 9. MSTAR samples and RANC’s preprocessing based on [31]

1) SAR Dataset, Training and Mapping: The MSTAR
public dataset [30] is a collection of SAR images that
contains eight classes of military vehicles, in which the
target is centered and taken from an angle of depression
of 15 and 17 degrees. Images are grayscale and roughly
128x128 in dimension, and each testing class contains
around 300 images. To map SAR classification to the
RANC ecosystem, we first preprocess the imagery in a
similar approach taken by Renz and Wu [31] as illustrated
in Figure 9. MSTAR dataset images vary in size from
class to class, so we normalize all images to 128x128 first,
then take a 64x64 image chip from the center of this
resized image. These 64x64 images are then down-sampled
to 32x32 using nearest-neighbor sampling. The grayscale
pixels, which take values between 0 and 255, are encoded
into a spike form via a simple thresholding method where
values <128 are dropped and values >128 are converted
to a single input spike. The converted spikes are then sent
into our network as a representation of the target object.
The network we deploy uses a convolutional layer followed
by two fully connected layers. The result is then passed
through an additive pooling layer for final classification to
one of the eight classes.

We ran sweeping experiments with RANC’s training
libraries to determine the ideal kernel and stride sizes
within the ranges of 4 to 24 and 1 to 5 respectively. Based
on these experiments, our implementation’s convolutional
layer uses two 11x11 kernel feature maps with a 1x1 stride,
which generates an output feature count close to the 1024
inputs available into next fully connected layer. The fully
connected layers are trained using the flow presented in
Section II. To build SNN-compatible 2D convolutional
layers, we train standard 2D convolutional layers and
quantize them. Quantization from floating-point is done
after training is complete to create an SNN-compatible
layer, and these are linked with the fully connected layers
trained with the methodology from Section II. We then
feed these trained weights along with the spike encoded
MSTAR dataset into the RANC ecosystem for our func-
tional verification and accuracy analysis. While better
training techniques such as BinaryConnect [32] exist in the
literature for achieving peak accuracy in mapping CNNs to
neuromorphic hardware, in this study we have a different
objective than pure training accuracy. Instead, we seek to
illustrate, holding the training method fixed, that there is
potential for hardware architectural exploration in opti-
mizing the mapping of existing CNN network structures
to neuromorphic hardware platforms.
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TABLE VI
RESOURCES AND PERFORMANCE COMPARISON FOR SAR
CLASSIFICATION NETWORKS

Design Cores  Axons Neurons Accuracy
Default 489 125184 125184 75.7
Modified 9 5376 1344 75.7
Reduction (%) - 95.7 98.9 0.0
TABLE VII

SAR POST-IMPLEMENTATIONS USING ALVEO U250 FPGA BASED ON
DEFAULT, MODIFIED AND 24 PARALLEL INSTANCES OF MODIFIED
CONFIGURATIONS WITH RESOURCE USAGE AND RATIO WITH RESPECT

TO TOTAL AVAILABLE FOR EACH RESOURCE TYPE.

Design LUT RAM_yr FF BRAM
Default 1334047 148496 751354 2684
Default(%) 77.2 18.8 21.7 99.9
Modified 52609 7476 20754 64.0
Modified (%) 3.0 0.9 0.9 2.4

Modified?% 879965 152387 386714  2152.0
Modified?*(%) 50.9 19.3 11.1 80.1

2) Convolution Mapping Efficiency: In RANC’s default
configuration, core axon size limits the maximum allowed
kernel and image subsection available to a core to be
an 11x11 square region. Following the same calculations
within the mapping methodology of Figure 8, we find
that 484 cores are needed and each pixel is replicated on
average 60 times. By utilizing a modified architecture with
heterogeneously sized cores of size 1024x256, we find that
a 22x22 image subsection is available to each core, and
only four convolutional cores are necessary to compute all
overlap regions. In this methodology, neuron utilization
increases from 0.7% to 94.5% and effective axon utilization
increases from 1.7% to 50%. Details on these calculations
are provided in Appendix B. The convolution outputs for
both the default and proposed architecture are sent into a
fully connected layer of four cores, and each feed 64 neuron
outputs to a single core. The output of this last core’s 64
neurons can then be classified after using additive pooling
to sort them into one of the eight classes.

3) Performance Analysis - Default vs. Modified RANC
Configurations: In Table VI, we compare the resources
required by the default architecture and our modified
architecture with heterogeneous cores on RANC in terms
of number of cores, axons, neurons, and the accuracy of the
classification. Although core sizes differ preventing a fair
comparison in core count, the heterogeneously sized core
requirements see significant reduction in total system axon
and neuron count. The convolutional layer itself remains
functionally equivalent between the two architectures. As
only the mapping methodology is changed, no difference
in classification accuracy occurs when using the same set
of trained weights on the RANC simulator.

In Table VII, we present post-implementation resource
utilization for both architectures on Alveo U250 FPGA.
We observe resource savings with the modified architec-
ture due to factors related to network mapping efficiency.
Replacing the fully connected 256x256 cores with cores
sized at 256x64 within the modified design allows those
cores’ neuron parameters to map to LUTRAM instead of
BRAM, reducing total BRAM usage. As in the prior VMM
experiment, reducing the neuron count for these cores



TABLE VIII
DELAY AND THROUGHPUT COMPARISON POST-IMPLEMENTATION FOR
SAR NETWORK ON ALVEO U250
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TABLE X
DELAY AND THROUGHPUT COMPARISON POST-IMPLEMENTATION FOR
CIFAR-10 NETWORK ON ALVEO U250

Design Delay Freq Clock Cycles  Throughput Design Delay Freq Clock Cycles  Throughput
(ns) (MHz) per Tick (Images/sec) (ns) (MHz) per Tick (Images/sec)
Default 4.688 213.3 66308 3216 Default 3.979 251.3 66308 3788
Modified 4.024 248.5 265220 936 Modified 3.864 258.8 134148 1929
Modified x24 | 4.352 229.7 265220 20785 Modified x8 | 4.288 233.2 134148 13907
TABLE IX

CIFAR-10 POST-IMPLEMENTATIONS USING ALVEO U250 FPGA
BASED ON DEFAULT, MODIFIED AND 8 PARALLEL INSTANCES OF
MODIFIED CONFIGURATIONS WITH RESOURCE USAGE AND RATIO
WITH RESPECT TO TOTAL AVAILABLE FOR EACH RESOURCE TYPE.

Design LUT  RAMryr FF BRAM
Default 1065424 112624 595321  2035.0
Default(%) 61.7 14.2 17.2 75.7
Modified 112587 22094 50843 2455
Modified (%) 6.5 2.8 1.5 9.1
Modified® 847652 169939 333971  2301.5
Modified® (%) 49.1 21.5 9.7 85.6

requires fewer muxes, adders and comparators decreasing
LUT usage, and fewer neuron potential registers con-
tribute to LUTRAM reduction. Additionally, a reduction
of total core count due to the use of convolutional cores
results in large BRAM savings over the default design, as
less core parameters will need to be mapped in total.

The reduction in LUTs and BRAMs has the direct effect
of improving critical path delay as shown in Table VIII.
After converting these delays to a clock frequency for both
designs, we see that the modified network can operate at
a slightly faster clock rate of the RANC default. However,
this improvement does not translate to an increased image
classification throughput. As largest core size increases
within a design, the clock cycles required to complete
the core controller’s state machine increases. The increase
is almost directly proportional to the size increase of
the core’s neuron crossbar. A 1024x256 core’s maximum
number of synaptic connections is four times of the default
256x256 core, resulting in a tick rate approximately a
fourth of the design with default configuration. Coupled
with the operational frequency, throughput of the modified
design is 29.1% of the default.

Although the time required for core computations
within each tick increases by a factor of four within our
modified design, a 97.6% reduction in BRAM usage allows
24 of these total modified networks to be mapped in
parallel before the BRAM usage in the U250 surpasses 80%
as shown in Table VII. We limit the parallelization past
80% BRAM usage to achieve a similar operating frequency
of the default network. With 24 classifiers in parallel, the
heterogeneous core implementation can achieve an image
classification throughput 6.46 times that of the default
configuration when factoring in the slower tick rate. Note
that the default architecture can not be parallelized by
any factor due to its large size, and that the 24 modified
networks enjoy less or equivalent total usage compared
to the default for all resource types. The throughput
comparison for each configuration is detailed in Table VIII.

Renz and Wu deployed a DCNN on IBM’s TrueNorth
to classify SAR images and achieved an accuracy of 95.6%

[31] with the expense of utilizing 4042 of the 4096 cores on
a single TrueNorth chip. Because of the insufficient infor-
mation on their network architecture and unavailability
of IBM’s Energy-Efficient Deep Neuromorphic Network
(EEDN) learning framework [33], we were unable to create
the exact architecture. Even with Renz and Wu’s network
design, EEDN does not grant a user access to layer
specifics such as regularization or activation functions
[34], which would prevent us from accurately replicating
their work. However, with limited information and a fewer
number of cores, we are able to achieve an accuracy of
75.7%. Despite our lower accuracy, the objective of the
SAR mapping experiment is to demonstrate the versatil-
ity of our hardware and software codesign environment.
The ability to customize the hardware configuration by
adjusting the number of axons and neurons per core allows
resource efficient implementation of SAR classification on
a neuromorphic architecture. The maximum kernel size
limitation for neuromorphic convolution is removed as
the number of axons can be flexible per core. These two
benefits allow the convolution operation to be mapped
more efficiently within deep CNNs, increasing throughput
via the ability to parallelize with freed resources.

4) CIFAR-10: To demonstrate the generalizability of
the techniques illustrated with SAR, we repeated the
study with a network trained for CIFAR-10. With an
additional two channels of data to represent full RGB,
maximum kernel size was further restricted to 7x6 within
RANC’s 256 axon default configuration. The largest initial
network we could fit used a convolutional kernel of 6x6
requiring 364 cores, and after applying the same core-
sizing optimizations as in SAR, with the modified configu-
ration we were able to reduce to 23 cores. This corresponds
to an 85% reduction in BRAM utilization as shown in
Table IX. Similar to the SAR study, the modified network
results with an increase in the number of clock cycles per
tick due to increase in the size of the neuron crossbar
as shown in Table X. However, the reduction in resource
usage allows achieving a net throughput improvement of
3.6x compared to the default configuration by scaling the
modified architecture to eight parallel classifiers. Hence,
regardless of the dataset type and shape, these techniques
can be applied to optimize the resource utilization of CNNs
with large amounts of overlap to neuromorphic hardware
through architectural adjustments in RANC.

C. Scalability Analysis

In this section we quantitatively determine and discuss
the FPGA scalability limits of the current RANC ecosys-
tem. All results are obtained through post implementation



TABLE XI
ALvEO U250 RESOURCE UTILIZATION FOR RANC GRIDS COMPOSED
OF N(a) = N(n) = 256 CORES AS A FUNCTION OF GRID SIZE

Cores | LUT  RAMiyr FF BRAM Delayns
1x1 23152 448 16777 5.5 3.835
2%2 27458 1056 20203 16.5 3.890
4x4 55229 4704 38926 82.5 3.857
8x8 166646 19296 114142 346.5 3.821

16x16 | 616965 77664 419326 1402.5 3.962

20x20 | 1168845 121440 649815 2194.5 4.102

21x21 | 1287726 133904 715367  2420.0 4.130

22x22 | 1412498 146976 784270  2656.5 4.138

23x23 | 1599760 215216 872162  2684.0 4.234

Maximum non-square grid

24x23 | 1698995 253580 918316  2684.0 5.639

Total available resources

1728000 791040 3456000 2688

analysis using Vivado 2019.2. Table XI presents the scal-
ability for RANC’s default configuration N(a) = N(n) =
256 as a function of the resources available on the Alveo
U250. We find that, for this core configuration, BRAM
availability is the limiting resource, and the design scales
approximately linearly from 1 core up to the maximum
supported grid of 552 cores. With a 5.639ns critical path,
this gives a core frequency of f.ore = 177.336MHz, al-
though many grids operate at much closer to 250MHz.
Given that 66,308 cycles are required for the core con-
troller in the event that all 65,536 synapses are connected,
this gives that the maximum global f;., is 2.674kHz.
However, by changing just the core sizing, we can cause
LUTs to instead be the limiting factor. To demonstrate
this, we conducted another equivalent sweep where each
RANC core was sized with N(a) = N(n) = 128. In
this case, the BRAMs required per core drop from 5.5
to 3.5, and LUT resources are exhausted with scaling.
With this, we find that the maximum grid size is given by
26 x 26 = 676 cores. Small cores such as these may have
benefit in applications that, i.e., require a high fi;.x rate as
the internal clock rate for each core is feore = 241.31MHz,
and the number of cycles required by the core controller
in the worst case drops to 16,768. Together, this gives
an frer of 14.39kHz. If, instead, the goal is to emulate
the largest possible architecture, we must determine the
correct configuration that can maximally utilize all the
FPGA fabric primitives. As BRAM is the limiting resource
to our scalability in the default configuration, that will
be the focus here. In our case, each baseline RANC core
requires 5.5 72-bitx512 word BRAM primitives. As all
BRAM primitives in the design are utilized by the core
SRAM, we must ensure that we are utilizing all 512 words
of the BRAM primitives and that each one of these words
is 5.5 x 72 = 396 bits in size. The width of each word
is easily controlled by the axon count, and the number
of words is controlled by the number of neurons, so the
core that maximizes utilization of a single set of BRAM
primitives is a core with N(a) = 283 and N(n) = 512.
When we synthesize a single core with this configuration,
we see that the resource utilization is unchanged outside
of some logic expanding in width to deal with the larger
core SRAM data words. We then conducted a similar
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scalability analysis as previously, and we find, because
of slight increase in LUT stress per core, that a slightly
lower stopping point of 506 cores in a 23x22 grid is
entirely achievable. In total, this configuration enables
RANC to support 23x22x512=259,072 distinct neurons
and 259,072x283="73,317,376 distinct synapses.

V. RELATED WORK

As the use cases for RANC intersect with a large number
of research areas, we break the discussion on related work
into two parts. First, we discuss the large body of work in
existing software simulators and discuss how they can be
found to be complimentary to the goals of RANC. Then,
we discuss existing hardware architectures, and we note
the differentiating factors that make RANC stand out.

Starting with software simulators, there has been a
large amount of work in this area ranging from biolog-
ically accurate simulators for use in computational neu-
roscience to simulators inspired by the recent uptick in
machine learning research. On the biological front, NEST
2.20.0 [16], Brian 2 [17], and NEURON [18] are among the
most widely known simulators. While the level of detail
they provide is surely appreciated among neuroscientists,
their bio-realism leads to long runtimes for those only
interested in their application to computation. Towards
enabling enhanced usability across simulators, frameworks
like PyNN [35] enable easy porting of models across all
of these simulators. CARLSim4 [19] is arguably suited for
both biological and computational use cases, as while they
initially started with a similar focus on GPU-accelerated,
biologically plausible SNN simulation, they have begun to
similarly apply CARLSim towards general neuromorphic
computing applications through advances such as Py-
CARL [36]. Finally, on the purely machine learning side,
packages like SpykeTorch [37] are available to enable rapid
training and testing of SNNs. RANC differentiates itself
from these simulation-oriented works by providing an end-
to-end ecosystem that tightly couples software simulation
and hardware emulation. As such, we are not limited to
simulation based experiments. Instead we can combine
simulation and FPGA based analysis to progressively
move from testing new ideas in software to implementing
equivalent changes in hardware. This allows rapid valida-
tion at the application level impacts through software and
enables evaluating further impacts on latency, power, and
resource utilization through hardware. While frameworks
like PyCARL [36] claim to have support for simulating
commercial platforms such as TrueNorth and Loihi, to
the best of our knowledge, no results are presented in this
regard. Additionally, the cycle-accurate simulator they use
is a general purpose NoC simulator that requires precise
SystemC implementations of the NoC tiles tested. As
far as we are aware, no SystemC implementations are
available for either TrueNorth or Loihi.

Moving on to hardware platforms, most existing work
in neuromorphic hardware has been the production of pre-
fabricated ASICs in both the commercial sector with chips
like Intel’s Loihi [14], IBM’s TrueNorth [13], the Akida



Neuromorphic SoC [38], or Qualcomm Zeroth [39] and
the academic environment with chips like SpiNNaker [40],
DYNAPs [41], NeuronFlow [42], SpinalFlow [43], or
ODIN [44]. Of these, ODIN is notable in that it has
an open source verilog implementation despite not being
targeted towards FPGAs. With that, it is similar to the
RANC FPGA emulation environment, and it includes
some features that RANC does not such as spike-driven
synaptic plasticity (SDSP). Compared to RANC, how-
ever, ODIN has distinct goals with regards to energy
minimization and biological plausibility. The ODIN chip
includes only a single crossbar without a broader NoC
that connects many parallel neuron crossbars together. As
such, with ODIN, the focus is not on providing a scal-
able architecture for neuromorphic computing but instead
maximizing energy savings and enabling large amounts of
biologically realistic neuron behaviors. Without a broader
NoC, the mapping methodologies required for applications
like multilayer SNNs or VMM explored in this paper are
quite unclear, and it cannot be used for the same style
of architecture exploration as RANC’s focus on general
purpose neuromorphic compute. While RANC’s FPGA
emulation has a number of disadvantages with regards to
power, latency, and resource usage compared to ASICs,
the key advantage of RANC against ASIC platforms such
as these is that RANC is not a fixed architecture. To the
contrary, RANC is built with architectural exploration
in mind and as such it prioritizes easy exploration of
novel methods of neuromorphic computing at the archi-
tectural level rather than only the application level. If
the production of improved ASIC architectures is the end
goal, RANC positions itself as an environment where such
architectural research can be performed. In the vein of
FPGA-based architectures, the closest academic platforms
to what RANC offers are Minitaur [45] or DANNA 2 [46].

Minitaur is an FPGA-based SNN accelerator with an
event-driven architecture. Based on the details provided,
the architecture presented takes a fundamentally different
approach from the one taken by RANC. Rather than for
general neuromorphic computing, Minitaur is presented
purely as an accelerator for spiking neural network in-
ference, and while it is an FPGA-based design, the pa-
rameters given are presented as fixed to the design. As
such, there are questions as to how flexible the design
is in emulating network configurations with widely varied
core requirements. In particular, Minitaur appears to be
less flexible in enabling general spike-based computation
than the NoC approach utilized by RANC, as it is unclear
how algorithms like vector matrix multiplication would
be mapped. Additionally, the fanin/fanout capabilities are
wildly different, with Minitaur utilizing range-based des-
tinations that map connections via start and end address
ranges rather than directly mapping between neurons.
Finally, while the Minitaur design is quite compact, there
are concerns with its throughput as, for instance, the
MNIST results presented require 1000 spikes per image
in order to achieve their maximum of 92% accuracy on
MNIST compared to the 1 to 16 spikes used in the studies
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presented here with 96+% accuracy. Whether this due to
differences in network architecture, training methodology,
or hardware is unclear. Meanwhile, DANNA2 is the second
iteration of DANNA [47], an environment for neuromor-
phic computing that combines software simulation with
FPGA and VLSI implementations. Compared to RANC,
the architecture presented in DANNAZ2 is quite different.
Each element in the DANNA2 grid has a fixed set of 24
input synapses that feed a single neuron unit, and this is
overall much lower than a single RANC node that supports
N(a) inputs and N (n) outputs per node. One consequence
of this is that DANNA2 nodes inherently give a lower
fanout per node than the N(n) neurons in a single RANC
core. Coupled with the fact that each node only has a
fixed set of 24 inputs compared to N(a), many of the
optimizations explored in VMM and SAR execution in-
volving heterogeneous sizing of cores are infeasible on such
an architecture. For DANNAZ2 in particular, to the best of
our knowledge, no published FPGA results are available
to directly compare against. This contrasts the published
results for the original DANNA [47], which depicts an
even more divergent architecture. Negative weights are
unsupported and there are only 8 inputs per neuron,
and consequently, concerns regarding the fanin/fanout
capabilities of DANNA2 apply to DANNA as well.

Finally, in the vein of hardware-software ecosystems
for neuromorphic computing, two of the most relevant
works are Nengo [48] and NAXT [49]. The Nengo ecosys-
tem [48] provides a rich set of APIs to develop large-
scale spiking and non-spiking neural networks on a wide
range of platforms (e.g. FPGA, Loihi, HPC). In particular,
NengoFPGA requires a proprietary bitstream to interact
with the Nengo APIs and does not provide a means to
exploring novel neuromorphic architectures. However, sim-
ilar to NengoLoihi and NengoSpiNNaker, developing Nen-
goRANC APIs in the future would enable co-design and
execution of SNNs for user defined neuromorphic architec-
tures in the RANC environment. Meanwhile, NAXT [49]
provides an environment where users can generate FPGA-
based SNN accelerators with a wide degree of flexibility
in parameters of the generated architecture with regards
to parallelism versus resource-usage tradeoffs. However,
as NAXT is tailored specifically for SNN execution, the
architectures it generates are specifically tailored for the
baseline SNN architecture that is being mapped, and they
are not suitable for use either by other SNNs with different
architectures or non-machine learning applications in gen-
eral. In this regard, RANC differentiates itself by providing
architectures that are independent from the applications
they execute and supporting non-machine learning appli-
cations that can still be decomposed to parallel spike-
based computations like solving sparse coding via the
locally competitive algorithm [27].

For the sake of completeness, we end by acknowledg-
ing some key limitations to the RANC framework as it
currently stands and how the project’s goals align with
these limitations. First, as our intention is neuromorphic
computing over biologically realistic modeling, our ecosys-



tem does not support features such as stochastic behavior
or emulation of detailed neuronal dynamics, and we focus
instead on the synaptic cores and a basic leaky-integrate-
and-fire neuron model. Second, while the architecture is
amenable to this in the future by customizing the Router
component, there is currently no support for NoC topolo-
gies other than the current 2D mesh. Finally, the core
architecture is built around storing a dense-matrix form of
synaptic connections, and supporting sparse alternatives
will require architectural changes. However, to the best
of our knowledge, RANC is a wholly unique environment
in its design goals and capabilities. While it has a software
simulation component, it is distinct from existing software
simulators through its ability to conduct wider studies
impacting both hardware and software usage. While other
hardware designs have been proposed, RANC differs from
existing ASICs by its reconfigurable nature and from
FPGA implementations with its architectural differences
and open source availability.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce RANC, an open source hard-
ware and software ecosystem for neuromorphic computing.
We used the training, simulation, and emulation environ-
ments to validate functionality against existing baseline
architectures and conduct rich hardware case studies on
how improvements can be made beyond the baseline. We
illustrated how RANC allows the user to expose impacts
of architectural design decisions through trend-based anal-
ysis and understand the impacts between different archi-
tectural parameters via combinatorial parameter sweeps.
With this level of functionality, we believe that these tools
will stimulate further research into exploration of novel
neuromorphic computing architectures.

As future work, we plan to incorporate richer architec-
tural features such as multicast routing, on chip learning
via spike timing dependent plasticity (STDP) and related
learning methods, and robust support for heterogeneous
core configurations. Learning via STDP variants in par-
ticular has been used to solve problems such as ECG
classification [50], robot target tracking [51], and network
pruning [52] quite successfully. These added architectural
features will extend RANC’s ability to emulate advanced
neuromorphic architectures including, but not limited to,
Intel’s Loihi. As it stands, RANC has a number of existing
features in common with Loihi. Like RANC, Loihi uses
dimension-order routing to enable communication between
the cores, each core receives and processes spike packets
with LIF neurons, and these neurons themselves integrate
received spikes to generate further spikes on the NoC.
While the implementation details vary between the two
platforms in how they manage core synchronization or
particular features such as core multicast and neuron
compartmentalization, the flexibility of RANC allows for
gradual integration of differing aspects in the future. Ad-
ditionally, we will investigate how these features impact
not only resource utilization but also the kinds of algo-
rithms and applications that can be deployed on RANC.
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Finally, to enable richer support for neural networks, we
will incorporate support for other well-established Python-
based SNN training packages to enable easily porting
architectures from other environments.
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APPENDIX

A. Positive 4-bit VMM Execution

In this appendix, we illustrate the mapping method-
ology of positive VMM through example. The vector
values in our example are [1, 3,2, 1] and the matrix values
are [2,1,4,12]T. This particular VMM implementation
requires two RANC cores. The first core performs the
VMM as binary computation while the second core con-
verts the binary representation to integer, producing a
number of spikes correctly representing the final product.
In Figure A.1, we illustrate the VMM implementation
using a crossbar, which represents the computations in
the first core. In this crossbar, the and shapes on the left
represent axons (a;) indexed from 0 to 3, arranged from
top to bottom to align with the order of vector values. The
triangle shapes below the crossbar illustrate neurons (n;),
which are indexed from 0 to 3, arranged left to right. The
circles overlaid on the crossbar represent connection points
and weights between axons and neurons. The four digits
above the crossbar aid in illustrating that the connection
points found in each row depict a binary representation
of each matrix value. For example, the fourth row has
connection points at the columns representing 8 and 4,
which totals to 12, our fourth matrix value. On the left of
Figure 1(a), each vector element ([1,3,2,1]) is converted
to colored spike representation based on rate coding and is
aligned to the respective axon from top to bottom. These
spikes are delivered by the core controller from the packet
scheduler to the neuron datapath. Each square represents
a tick of execution, and this particular example requires
three ticks to process in the first core. We show state of
the crossbar before starting each tick with Figures A.1(b)-
1(c).

To execute VMM, each neuron, shown in Figure A.2, re-
ceives the axon type (7;), synaptic weights (w;“)7 previous
neuron potential (v;(t — 1)), leak (¢;), positive threshold
vj' and axon connections from the core SRAM via the core
controller. Each of the four participating neurons receives
(1), equivalent to the axon index, from the core controller.
This acts as the selector for the weight table mux, indexing
the desired weight. Each axon type received from the core
SRAM has a value of 1 indicating a binarized weight value
for each existing connection. Figure A.1(a) illustrates the
state of four neurons during the first tick and Table A.II
shows the tick by tick execution of the neuron n, with
values observed on each labeled wire and register of the
datapath shown in Figure A.2. In the following subsec-
tions, we describe the tick-by-tick behaviors observed by
the first and second cores in this VMM execution.

1) Core 1: We describe the tick by tick execution
illustrated with Table A.IT based on Figure A.2 and Fig-
ures A.1(b)-1(c). Figure A.1(a) illustrates the state of four
neurons during the first tick and Table A.IT shows the tick
by tick execution of the neuron n; with values observed
on each labeled wire and register of the datapath shown
in Figure A.2.

TABLE A.I
TICK BY TICK (t) STATE OF NEURON 0 IN CORE 2 WITHIN THE
[8,4,2,1] WEIGHTED CORE. SPIKES (.5;(¢)) OUTPUT BY ¢ = 4.

=

t | aj T | A v t—1)|D [NN|B | C v (t) 54 ()
210 0810 0 |1 0 [8 |0 0
2|1 1 1410 8 |0 8 |12 |7 1
2|2 21210 12 10 12 | 14 | 11 1
213 3 ]111]0 1410 14 | 15 | 13 1
N(a) 14 1
3|1 1 (4|14 0 [0 14118 |0 0
313 3|11 ]14 1810 18 |19 | 17 1
N(a) 18 1
411 1 |4 118 0 |0 181220 0
413 3 11|18 2210 22 | 23|21 1
N(a) 22 | 1
TABLE A.IT
PosITIVE VMM MAPPING FOR CORE 0, NEURON 1.
t | a; T | A Vj (t — 1) D|NN|B]|C v (t) Si(t)
1|2 2 110 0|0 0]11]0 0
13 31110 110 11210 1
N(a) 1 1
212 0 |1 |1 0|0 11210 0
N(a) 1 1

For the ny in Figure A.1(a), no connection points exist
for axons ag and a;. Therefore axons as and a3 contribute
to the potential and are evaluated sequentially starting
with as. First the axon type 7; of 2 is retrieved from the
core SRAM corresponding to as, and weight value of 1
(w?) is selected. This is integrated with an initial potential
of zero received from the “neuron potential” register (NP),
changing its value to 1. ny; then processes as, receiving
a (13) of 3 and selecting weight value (w$) of 1. This is
integrated with the current NP value of 1, and updating
its value to 2. Once all axons for a given neuron are
processed, the current potential is evaluated against the
"positive threshold”, which is 1 in VMM mapping. Since
7>1" condition is met, a spike s;(t) of 1 is generated by
ny and the core controller delivers this to the router to be
sent to the second core. When a spike of 1 is generated,
a linear reset mode is needed [27] to ensure accurate final
spike count. This is captured by the “positive reset value”,
which is equivalent to the NP — 1 and is output as v;(¢)
to be stored in core SRAM and retrieved as v;(t — 1) in
the next tick as the starting neuron potential. A similar
process is executed for all neurons. Within the first tick of
this example, ng integrates 1 spike, corresponding to the
connection to as, ni integrates 2 spikes as it is connected
to both as and a4, while ny and ng each integrate 1 spike,
from ag and a; respectively.

During the second tick, illustrated with Figure A.1(b),
a9 is the only contributor for n;. Starting with the previous
neuron potential of 1 retrieved from the core SRAM as
vj(t — 1) and integrating with the weight of 1 due to
as, causing ni to generate another spike as illustrated
in Table A.IIl. During this tick, n3 also participates and
emits spike due to a;. During the third tick, as seen in
Figure A.1(c), n3 participates as only a; has a spike. This
brings the total spikes emitted by each neuron to 1 for ng,
3 for nq, 1 for ny, and 3 for n3g over a total of 3 ticks.

2) Core 2: We describe the tick by tick execution
illustrated with Table A.I based on Figure A.3. The axons
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Fig. A.1. Mapping of vector [1, 3, 2, 1] and matrix [2, 1,4, 12}T. Input vector is arranged vertically such that the number of arriving spikes
equals the vector value at each axon. Matrix values are represented in a binary fashion where a connection and subsequent weight of 1 at a
given neuron-axon intersection corresponds to the overlaid 4-bit mapping. Each tick permits a round of spikes into the crossbar, and sees the
neuron potentials integrate accordingly. (a) shows the state at first tick, subsequent figures illustrate the state after each tick has elapsed.
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Core 2 of VMM applies integer weighting on Core 1’s

is decremented by the positive threshold to 22, and the

of the second core receive the spikes from the neurons of
the first core, where n; of first core attaches to a; of second
core. The cores operate in a pipelined manner where
during tick 1, the first core generates the first round of
spikes and during tick 2, the second core starts processing
these spikes. The spike packets of [1,3,1,3] generated by
the first core are shown in Figure A.3 that illustrates the
state of the second core. The tick by tick execution for
ng in core two is illustrated in Table A.I. At tick 2, all
four axons starting with ag contribute and the values of
8, 4, 2, and 1 are accumulated in this order. At the end
of this tick, the potential is evaluated at 15, far above
the positive threshold of 1. This triggers the first spike
to be emitted, and the application of the linear reset
value of 1, decrementing the potential to 14. At tick 3,
v;(t — 1) = 14 is retrieved and integrated with the spikes
on a; and az. These contribute 4 and 1 respectively,
bringing the potential to 19. This is followed by a positive
threshold decrement to 18 and subsequent second spike
generation. At tick 4, v;(t — 1) = 18 is added to the final
round of input spikes from a; and as, producing 23. This

third spike is generated. For subsequent ticks, there are
no incoming spikes to process on any axons. In this case,
process_spike is now zero, and the neuron datapath will
integrate a zero with the previous potential. The neuron
datapath continues to function by retrieving the previous
potential, evaluating it at the positive threshold of 1,
decrementing the potential by 1, and generating spikes as
long as it is at or above the threshold. The remaining 22
spikes combined with the three spikes generated during
the first three ticks result with a total of 25 spikes.

B. Azon and Nueron Utilization for SAR Imagery

We present the details of hand analysis for the crossbar
utilization for the Default and Modified RANC configu-
rations. Within RANC’s default configuration, the maxi-
mum kernel size is limited to 128 due to the axon count of
256, and therefore the 121 pixel kernel is the largest square
(11x11) allowed per core. An 11x11 kernel striding over
a 32x32 SAR image without padding results in a 22x22
map, or 484 individual strides. As we have two 11x11
kernels, and two neurons per core can be utilized, 484 cores
are needed to conduct this convolution. For this default
configuration, each pixel is replicated on average 60 times.
Unique axon usage is at 1.7%, and each core uses two
neurons out of the 256 available, or 0.7%. In our proposed
modified architecture, we set N(a) = 1024, N(n) = 256.
1024 axons within a core allow for 512 pixels to be available
for computation. In a similar fashion to the example within
Figure 8, core axon size limits the maximum allowed kernel
and image subsection available to a core to a 22x22 pixel
region.

As the image size is 32x32, four separate 21x21 pixel
regions supplied to four convolutional cores are sufficient
to conduct the entire operation. 121 of the total required
484 stride operations are executed per core, resulting in
242 of 256 neurons used as each stride has a feature depth
of two. The total output of this convolutional layer is 968
neurons, so neuron utilization increases to 94.5%. The four
cores use a total of 4096 axons, and since 2x32x32=2048
axons would be the ideal minimum required, effective axon
utilization increases to 50%.



