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Motivation

• PyTorch models can be deployed to GPUs seamlessly. However, GPU fails to 
meet energy requirements of edge devices. While PyTorch offers deployment on 
energy efficient FPGA systems, a rapid and seamless flow is yet to be provided.

• Deployment on heterogeneous systems is particularly challenging requiring a 
degree of hardware expertise. There are challenges from resource management 
perspective, productive application development and hardware agnostic 
deployment.

• Although various approaches tackle some of the above challenges, a system 
level solution that addresses all of them has yet to be designed.

• Goal: Enabling productive, rapid and seamless PyTorch model deployment 
on heterogeneous SoCs considering

• hardware agnostic application development
• balance trade-off between throughput and energy efficiency
• explore SoC configurations for PyTorch based workflows
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CEDR1 – A Compiler-Integrated, Extensible DSSoC Runtime
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Experimental Setup and Results

• Dynamically loads accelerator supported functions during runtime
• Capable of running any PyTorch model on the heterogeneous SoC

• 3 CPUs and Conv2D, FFT and ZIP accelerators
• 3 PyTorch and 2 signal  processing applications
• Object Detection, VGG, Speech Classification
• WiFi-TX, Pulse Doppler

• 3 distinct scheduling  heuristics
• Earliest Finish Time (EFT)
• Earliest Time to Finish (ETF)
• Heterogeneous Earliest Finish Time (HEFT-RT)2

Runtime capable of managing pool of CPU 
cores and accelerators are necessary

A rapid and seamless PyTorch model deployment 
technique is needed
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For the first time, PyTorch application developers have access to FPGA-based 
execution  without having to become hardware experts, which balances trade-
off between throughput and energy efficiency, and enables exploration of SoC 
configurations for dynamic workloads. Our next step involves designing 
resource management heuristics for machine learning workloads sharing an 
edge system with tight constraints utilizing this framework.
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