
Seamless and Rapid PyTorch Model Deployment in
Heterogeneous SoC
H. Umut Suluhan, Ali Akoglu

{suluhan,akoglu}@arizona.edu
Electrical and Computer Engineering Department, University of Arizona

Motivation

• PyTorch models can be deployed to GPUs seamlessly. However, GPU fails to
meet energy requirements of edge devices. While PyTorch offers deployment on
energy efficient FPGA systems, a rapid and seamless flow is yet to be provided.

• Deployment on heterogeneous systems is particularly challenging requiring a
degree of hardware expertise. There are challenges from resource management
perspective, productive application development and hardware agnostic
deployment.

• Although various approaches tackle some of the above challenges, a system
level solution that addresses all of them has yet to be designed.

• Goal: Enabling productive, rapid and seamless PyTorch model deployment
on heterogeneous SoCs considering

• hardware agnostic application development
• balance trade-off between throughput and energy efficiency
• explore SoC configurations for PyTorch based workflows

Background Approach

[1]J. Mack, S. Hassan, N. Kumbhare, M. Castro Gonzalez, and A. Akoglu, “CEDR: A compiler-integrated, extensible DSSoC runtime,” ACM
Trans. Embed. Comput. Syst., vol. 22, no. 2, Jan. 2023, issn: 1539-9087. doi: 10.1145/3529257

Reconfigurable
Computing Lab

CEDR1 – A Compiler-Integrated, Extensible DSSoC Runtime

CEDR_CONV_1D
CEDR_CONV_2D

CEDR_GEMM

libdash.so

nn.conv2D
 nn.Linear
 nn.Conv1D
nn.Maxpool2D
 nn.ReLU

libtorch_cpu.so

Tensor maxpool2D()
Tensor ReLU()

Tensor conv1d()
Tensor conv2d()
Tensor linear()

Dynamically
load API

functions

Not API supported,
fallback to CPU

Experimental Setup and Results

• Dynamically loads accelerator supported functions during runtime
• Capable of running any PyTorch model on the heterogeneous SoC

• 3 CPUs and Conv2D, FFT and ZIP accelerators
• 3 PyTorch and 2 signal processing applications
• Object Detection, VGG, Speech Classification
• WiFi-TX, Pulse Doppler

• 3 distinct scheduling heuristics
• Earliest Finish Time (EFT)
• Earliest Time to Finish (ETF)
• Heterogeneous Earliest Finish Time (HEFT-RT)2

Runtime capable of managing pool of CPU
cores and accelerators are necessary

A rapid and seamless PyTorch model deployment
technique is needed

Conclusions and Future Work

This material is based on research sponsored by the Air Force Research Laboratory (AFRL) and the
Defense Advanced Research Projects Agency (DARPA) under agreement number FA8650-18-2-7860.
We appreciate the continuous and generous support from the AMD University Program, including the
donation of the FPGA prototyping board used in this work.

Acknowledgments

For the first time, PyTorch application developers have access to FPGA-based
execution without having to become hardware experts, which balances trade-
off between throughput and energy efficiency, and enables exploration of SoC
configurations for dynamic workloads. Our next step involves designing
resource management heuristics for machine learning workloads sharing an
edge system with tight constraints utilizing this framework.

[2] J. Mack et al. “Performant, multi-objective scheduling of highly interleaved task graphs on heterogeneous system on chip devices,”
IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 9, pp. 2148–2162, 2022 doi.org/10.1109/TPDS.2021.3135876

	Slide 1

