

Value-Based Resource Management at SoC Scale

Serhan Gener, Sahil Hassan, Ali Akoglu

Department of Electrical and Computer Engineering, University of Arizona {gener, sahilhassan, akoglu}@arizona.edu

1

Motivation

- Value-based schedulers have been demonstrated as an effective method in HPC domain
- Challenges in the SoC domain:
 - o Dynamic workloads
 - Heterogeneous resource pool
 - Decision-making time
 - Effective utilization of heterogeneous SoC platforms
- First steps to adapt value-based scheduling heuristics to SoC scale

Value Definition

Value of an application as a function of time:

$$v_i = \begin{cases} 0, \\ v_{max_i}, \\ v_{max_i} - \frac{\left(t_{cmp_i} - t_{sft_i}\right) \times \left(v_{max_i} - v_{min_i}\right)}{t_{hrd_i} - t_{sft_i}}, \end{cases}$$

parameter	definition		
i	application id in the order of arrival		
$v_i(t)$	value earned by i^{th} application at time t		
t_{hrd_i}	hard deadline for the application <i>i</i>		
t_{sft_i}	soft deadline for the application i		
t_{cmp_i}	completion time for the application i		
v_{max_i}	maximum value application i can obtain		
v_{min_i}	minimum value application <i>i</i> can obtain		
t	time since the start of an experiment		
S(t)	number of applications submitted till t		
SV(t)	system value at time t		

$$t_{cmp_i} > t_{hrd_i}$$
 $t_{cmp_i} < t_{sft_i}$
 $otherwise$

• Systems overall value gain:

maximize SV(t) =
$$\sum_{i=1}^{S(t)} v_i(t_{cmp_i})$$

Value per Time Heuristic

- Two variations of value-based scheduling heuristic:
 - Value of Service (VoS)
 - Value of Service (VoS)

At any point, if PVG is calculated as 0 discard the task and mark the application as failed

Repeat until all tasks are mapped

Experiment Setup on DS3 and Applications

Simulation of Jetson AGX MPSoC on DS31:

- 7 CPUs that support all the tasks in the application DAGs
- 1 Accelerator that supports various tasks

Application Setup:

- Hard Threshold scaled as 2.1 ($t_{sft_i} = 2.1 \times EFT\ Exec$)
- Soft Threshold scaled as 1 ($t_{sft_i} = 1 \times EFT \ Exec$)
- v_{min_i} set to 0.5
- Injection rate set to 78.5μ s
 - \circ One of each applications injected every 78.5 μ s

	RC	WiFi-TX	LD
EFT Exec	5,865	61,910	78,522
v_{max}	1	10	100
Maximum Branches	2	5	1
Accelerateable Tasks	3	5	4
Acceleration Gain	10x	10x	15x-8x

Results 1 – Undersubscribed to Oversubscribed System

Results 2 – Reproducing Saturation Trends - Robustness and Adaptability

Value-based schedulers are resilient in managing failed applications

Conclusion and Future Work

- Use of value-based scheduling methods in heterogeneous SoC devices to maximize system productivity
- Value-based heuristics outperform traditional approaches
- Enabling the platforms to adapt dynamically to changing execution flows by incorporating task priority
- Dropping low-priority tasks in the decision-making process
- Stays in orders of 120μs scheduling overhead
- Moving toward dynamic priority changes

Thank You!

Contacts

Serhan Gener – gener@arizona.edu

Ali Akoglu – akoglu@arizona.edu

Questions?

