E] Seamless and Rapid PyTorch Model Deployment in A THE UNIVERSITY
Heterogeneous SoC . OF ARIZONA.

H. Umut Suluhan, Ali Akoglu NN .
% {suluhan,akoglu}@arizona.edu : %a = | Reconfigurable
iﬁ%ﬁiﬂiﬂm Electrical and Computer Engineering Department, University of Arizona A e nad Computing Lab

Motivation

* PyTorch models can be deployed to GPUs seamlessly. However, GPU fails to
meet energy requirements of edge devices. While PyTorch offers deployment on
energy efficient FPGA systems, a rapid and seamless flow is yet to be provided.

* Deployment on heterogeneous systems is particularly challenging requiring a
degree of hardware expertise. There are challenges from resource management
perspective, productive application development and hardware agnostic
deployment.

* Although various approaches tackle some of the above challenges, a system
level solution that addresses all of them has yet to be designed.

* Goal: Enabling productive, rapid and seamless PyTorch model deployment
on heterogeneous SoCs considering

. . * hardware agnostic application development
Runtime capable of managing poolof CPU balance trade-off between throughput and energy efficiency

cores and accelerators are necessary * explore SoC configurations for PyTorch based workflows

Background Approach

S n.convoD " Tensor maxpool2D() | Not APl supported,
,z FSi e — TensorReLU() fallback to CPU
= e - PN i ' ___Tensorconvld() — CEDR CONV 1D
User Application (CIC++) Configuration r Binaries Output Logs %. > Loy -_':::',.._ *s _'.“' ‘\' . ': y n n .C O nV1 D ﬁ Te n S O r CO nv2d ()] — =
- S T (R LN ‘ . : CEDR CONV 2D |
CEDR Compilation App & PE 3 [Pe)| E R nn.Maxpool2D L Tensor linear() J : Y: N
Trackers | z 1 CEDR GEMM]
" = g o Rel U I | _
y Application ,% h =E] 3 oo 1501000?3039. nn. e 1]
CEDR Application Parser | i ° < "o m s B i% FooF R RS E T 20056\‘?"'::&’99‘ UNIVERSITY OF ! !
Scheduler |= % : Hamwareméo:;gtiaff — MICHIGAN ° ; °
ST I I e N e (5 - libtorch_cpu.so Dynamically [ibdash.so
Submission Process CEDR Daemon Process gﬁi@;&;{%& Vaie: 220 9/’ (;D GNURadiO @ e T l Ooa d AP I
St ol ‘u bl dhs >
Shared Memory IPC e - R Closer temem ; ﬂgg%!}!%!&! Q f unc tl ons
m co“ins /ELLON\"% - :::Il:_:EI:EI:AP-pl-_lllwl:ll-xlllllllAlll= i I "*”’«"”’"”W,’ A MIA == —_— O PyTO rc h * : w *ip ._ ‘ ‘ [
L < KON fft | WE 0 T Y NN e e e B o— s " £ oot Runtime Accel. Kernel
‘ 0',/ '-“\ 1l|llll-ll-ﬂl|llllillllllIIIllIl {10 0 O - ~~‘«V b geer Application (CIC++) Configuration Binaries Output Logs
Ae"'spa“] o m——————mal . LS B N *
5o \"I;* o 400 600 E —— = ‘H N ilati - > 0
GENERAL DYNAMICS [, Chomesns® Lune () ARIZONA T W s CEPRSemetaten Treckers [T -
) > PE;
o LSt ST 0 T arrr rrer CEDR Application : :]
. . . < <2 1NN NI ON (NN N (OO (OON DNONN CLODNN Dy (o heduler lee o § .
CEDR1 —AQompller—Integrated,ExtenS|ble DSSOC Buntlme ‘EPEETIE B 88 IL B IR B I 1L 1 ; seneduler === B L - PEw
£ CEDR Job
=Y | R]/IRIERIIIRRI/RRI/IM R § WM N Submission Process CEDR Daemon Process
[1]J. Mack, S. Hassan, N. Kumbhare, M. Castro Gonzalez, and A. Akoglu, “CEDR: A compiler-integrated, extensible DSSoC runtime,” ACM - | |] IR IR AR |
Trans. Embed. Comput. Syst., vol. 22, no. 2, Jan. 2023, issn: 1539-9087. doi: 10.1145/3529257 | L " o B I Shared Memory IPC
Time (ms)

A rapid and seamless PyTorch model deployment
technique is needed

* Dynamically loads accelerator supported functions during runtime
e Capable of running any PyTorch model on the heterogeneous SoC

Experimental Setup and Results

3 CPUs and Conv2D, FFT and ZIP accelerators

@ HEFT_RT @ EFT @

100 * IR _ #”+ 3 PyTorch and 2 signal processing applications
g~] t_g = c -.;f . . oo .
o3 pl z oo gL ,_J,.?,.-"f‘;,« * Object Detection, VGG, Speech Classification
£ o0 lIEE i * WIiFi-TX, Pulse Doppler
5 85 g ool £ [£ } ; « 3distinct scheduling heuristics
80 gl o+ 1 %%« Earliest Finish Time (EFT)
> S & cs i e : : ..

i 2 e G, 8 %S ¢ Earliest Time to Finish (ETF)
(@) Hardwa,.e onfi <0 . o e .
'’ Cenfigurations Heterogeneous Earliest Finish Time (HEFT-RT)?

6.5] [2]). Mack et al. “Performant, multi-objective scheduling of highly interleaved task graphs on heterogeneous system on chip devices,”

IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 9, pp. 2148-2162, 2022 doi.org/10.1109/TPDS.2021.3135876
C3+V0+20 C3+V0+Z1 C3+V1+Z0 C3+V1+Z1

Resource Pool

Conclusions and Future Work

For the first time, PyTorch application developers have access to FPGA-based
execution without having to become hardware experts, which balances trade-

c3.||--||| BEERE NN RN off between throughput and energy efficiency, and enables exploration of SoC
configurations for dynamic workloads. Our next step involves designing
LR EERTOEE FANEETE A Y PO O e o ot . .

resource management heuristics for machine learning workloads sharing an

cul IR | BIAR (R BIAR I RIIR 1 edge system with tight constraints utilizing this framework.
Cz’Dl.lll LINRRALmiliimy |l Acknowledgments

N VGG mm ObjectDetection WM Speech

Processor

Zl'g I ’ ‘ l | l ' l } l | l | I I ”I“ I I| " I I ‘ This material is based on research sponsored by the Air Force Research Laboratory (AFRL) and the
Defense Advanced Research Projects Agency (DARPA) under agreement number FA8650-18-2-7860.
0 5000 4000 6000 8000 10000 We appreciate the continuous and generous support from the AMD University Program, including the

Time (ms) donation of the FPGA prototyping board used in this work.

	Slide 1

