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Motivation

* PyTorch models can be deployed to GPUs seamlessly. However, GPU fails to
meet energy requirements of edge devices. While PyTorch offers deployment on
energy efficient FPGA systems, a rapid and seamless flow is yet to be provided.

* Deployment on heterogeneous systems is particularly challenging requiring a
degree of hardware expertise. There are challenges from resource management
perspective, productive application development and hardware agnostic
deployment.

* Although various approaches tackle some of the above challenges, a system
level solution that addresses all of them has yet to be designed.

* Goal: Enabling productive, rapid and seamless PyTorch model deployment
on heterogeneous SoCs considering

. . * hardware agnostic application development
Runtime capable of managing poolof CPU balance trade-off between throughput and energy efficiency

cores and accelerators are necessary * explore SoC configurations for PyTorch based workflows

Background Approach
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A rapid and seamless PyTorch model deployment
technique is needed

* Dynamically loads accelerator supported functions during runtime
e Capable of running any PyTorch model on the heterogeneous SoC

Experimental Setup and Results

3 CPUs and Conv2D, FFT and ZIP accelerators

@ HEFT_RT @ EFT @

100 * IR _ #”+ 3 PyTorch and 2 signal processing applications
g~ ] t_g = c -.;f . . oo .
o3 pl z oo gL ,_J,.?,.-"f‘;,« * Object Detection, VGG, Speech Classification
£ o0 lIEE i * WIiFi-TX, Pulse Doppler
5 85 g ool £ [ £ } ; « 3distinct scheduling heuristics
80 gl o+ 1 %%« Earliest Finish Time (EFT)
> S & cs i e : : ..

i 2 e G, 8 %S ¢ Earliest Time to Finish (ETF)
(@) Hardwa,.e onfi <0 . o e .
'’ Cenfigurations  Heterogeneous Earliest Finish Time (HEFT-RT)?

6.5] [2] ). Mack et al. “Performant, multi-objective scheduling of highly interleaved task graphs on heterogeneous system on chip devices,”

IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 9, pp. 2148-2162, 2022 doi.org/10.1109/TPDS.2021.3135876
C3+V0+20 C3+V0+Z1 C3+V1+Z0 C3+V1+Z1

Resource Pool

Conclusions and Future Work

For the first time, PyTorch application developers have access to FPGA-based
execution without having to become hardware experts, which balances trade-

c3.||--||| BEERE NN RN off between throughput and energy efficiency, and enables exploration of SoC
configurations for dynamic workloads. Our next step involves designing
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resource management heuristics for machine learning workloads sharing an

cul IR |  BIAR (R BIAR I RIIR 1 edge system with tight constraints utilizing this framework.
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