A Runtime Manager Integrated Emulation Environment for Heterogeneous SoC Design with RISC-V Cores

H. Umut Suluhan¹, Serhan Gener¹, Alexander Fusco¹, Joshua Mack¹, Ismet Dagli², Mehmet Belviranli², Cagatay Edemen³, and Ali Akoglu¹

¹Department of Electrical and Computer Engineering, University of Arizona {suluhan, gener, jmack2545, afusco1, akoglu}@arizona.edu

²Computer Science Department, Colorado School of Mines, Golden, CO, USA {ismetdagli,belviranli}@mines.edu

³Electrical and Electronics Engineering Department, Ozyegin University, Istanbul, Turkey cagatay.edemen@ozyegin.edu.tr

Motivation

- As systems become more heterogenous, stress on runtime system increases
 - Task scheduling and resource management
 - Runtime overhead and scalability
- RISC-V offers ISA and datapath customization
 - Enables balancing performance and energy efficiency
 - Facilitates workloads that need hardware tailored for specific performance goals
 - Can also be utilized for resource management with light-weight RISC-V cores

Reconfigurable

Computing Lab

Contributions

- Leveraged customizable RISC-V cores to realize a scalable runtime system
- Demonstrated ability to deploy dynamic workloads on a RISC-V integrated heterogenous system using CEDR*

Link to the open source CEDR ecosystem

Hardware Agnostic Application Development and Deployment*

GENERAL DYNAMICS
Mission Systems

ARM'19

FOSDEM'20

GNU

Radio'20

FOSDEM'21

GNU Radio'22 ESWEEK'23 ISFPGA'24

Reconfigurable

Computing Lab

*Mack et al., "CEDR-API: Productive, Performant Programming of Domain-Specific Embedded Systems," Lectrical & Computer HCW'23 DOI:10.1109/IPDPSW59300.2023.00016

*Kumbhare et al., "User-Space Emulation Framework for Domain-Specific SoC Design," HCW'20 http://dx.doi.org/10.1109/IPDPSW50202.2020.00016

Scalability Limitation of Runtime System

CEDR Worker Thread Overview

Scenario: 3 Cores (C1-C3), 2 FFTs (F1, F2), 2 MMULTs (M1,M2) as worker threads for 4 concurrent apps → Cores 1-3: 3.67 threads/Core

CEDR RISC-V Integration

CEDR workflow with BOOM core for runtime manager thread, 3 "little cores" for managing the 3 FFT accelerators, and two "big cores" as CPU compute resources.

Hardware Unit	Parameter	BOOM	Big	Little
	Branch Prediction	✓	√	X
CPU	Floating Point Unit	\checkmark	✓	X
	Out-of-Order	√	X	X
	nSets	64/64	64/64	32/32
DCache/ICache	nWays	4/4	4/4	1/1
Deache/Teache	nTLBSets	1/1	1/1	1/1
	nTLBWays	8/32	32/32	8/8
	blockBytes	64/64	64/64	64/64

Configuration of RISC-V Cores

- Little cores handle accelerator management
 - low overhead execution
 - improves scalability

Experimental Setup

Hardware	Number	LUT	LUTRAM	DSP
Unit	of Units	Utilization	Utilization	Utilization
FFT	3	1.68%	1.06%	1.21%
BOOM Core	1	21.70%	0.76%	1.29%
Big Core	2	8.60%	0.27%	0.54%
Little Core	3	3.96%	0.15%	0.21%

Resource Pool

- 2 CPUs
- 3 FFT Accelerators

Utilization per Hardware Unit

Workload Composition

- Radar Correlator
- Pulse Doppler
- WiFi-TX
- Synthetic Aperture Radar
- Lane Detection

Scheduling Heuristics

- Earliest Finish Time (EFT)
- Earliest Time to Finish (ETF)
- Minimum Execution Time (MET)

Results

Stress test with FFT only tasks: single big core vs. three little cores

Results

	Number of Tasks	Concurrency Degree	2big (sec)	3little (sec)	Speedup	Overhead Reduction
RC	3	1x3	0.191	0.202	0.95x	3.29%
WiFi TX	100	10x10	3.291	2.939	1.12x	29.55%
PD	512	256x1 128x2	12.590	7.395	1.70x	36.61%
SAR	2,305	256x3 512x3	17.641	8.642	2.04x	47.31%
LD	6,148	256x24	46.03	20.35	2.26x	41.99%

Big cores vs Little cores for distributed accelerator management

Conclusions and Future Work

- Designed and developed an ecosystem that will serve application engineers and hardware architects for rapidly experimenting with RISC-V integrated heterogeneous systems.
- Showcased the versatility of CEDR framework capable of managing resources for RISC-V integrated heterogeneous systems
- Investigated the trade-off between centralized and distributed accelerator management
- Future Work
 - Integrate richer set of RISC-V cores with customized datapaths to support pipelined and dataflowcentric computations
 - Utilize customized RISC-V cores for handling accelerator-to-accelerator data flow management

Thank you!

Contact: {suluhan, gener, akoglu}@arizona.edu

