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Motivation
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e Heterogeneous computing holds a lot of potential, but it is difficult to effectively

leverage
e One approach: domain-specific SoC (DSSoC) processors

0 Restrict the scope of the problem while still enabling large performance gains
e (Goal: develop usable, domain-specific, coarse-scale embedded processors as a part

of the DARPA DSSoC program
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Motivation — DSSoC Programming

A

Many heterogeneous programs are constructed in a vacuum via
offline expert analysis

Static approaches to programming heterogeneous systems are
suboptimal
o Experts are scarce; static schedules are greedy

o  Scheduling preferences can adjust based on power, energy, or execution
considerations

Operating systems aren't meeting the needs of heterogeneous SoCs'

DSSoC platforms require novel compilation and runtime frameworks
to enable cooperative heterogeneous computation
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CEDR' — A Compiler-Integrated, Extensible DSSoC Runtime

e Open source?, unified environment for
programming and execution on DSSoCs

e Key features: GNURadio
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Hardware Configurations
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Limitations of Current Compilation Tooling

I
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(cic++)

for (1 = 0; i < N; i++) {
input = read_input();
outl = KERNEL;(input);
out2 = KERNEL,(input);
KERNEL3z(outl, out2);

}

COLLEGE OF ENGINEERING
Electrical & Computer
Engineering

A rvalas ompile into
o at binal
Automated Compilation flow | ] FFT-Accelerator
| m N l FFT-GPU
> 10110 l
| 01001 é_ ] I GEMM-CPU

| Fat Binary DAG (.jSOh) ] GEMM-Accelerator

Node ! \lt;rial;:e Code |
i tificati tructuri
identification [~ denitificato | restructuring GEMM-GPU
ompile into L S e
i

Handcrafted Compilation flow

,*c
O

No

)

Existing software compilation toolchain

represents applications as DAGs

o Automated transformation of C/C++ to DAGs
remains a difficult challenge
o Hand-crafting optimized DAGs is laborious

DAGs conceptually fail to capture many
desirable program structures



11bCEDR
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(CIC++)

e Developed a library of hardware-agnostic API calls coupled with platform-

specific implementations

e Allows for CEDR-independent CPU-only functional verification
o Applications can trivially be executed on arbitrary CEDR-compatible platforms by adjusting
1ibCEDR-rt.so

e Includes a task synchronization methodology that preserves functional
correctness
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APl Synchronization

A

User Code

User Code
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' barrier = cedr_barrier_init(NUM _TASKS = 1);

; i
i // Dispatch to the CEDR runtime : appape | | 3
' enqueue_cedr_task(API_TYPE, args, &barrier) — reer 5
i // Task is scheduled and run asynchronously i ATﬂiﬁ”’ | §
: 9 . : \ Scheduler |= = §=;-
, while (barrier.tasks_done != NUM_TASKS) { ! &
.1 pthread_cond_wait(barrier.cond); :
1} :
Kernel executions within CEDR are asynchronous relative to
user applications
Users focused on correctness can leverage blocking APls
that abstract away this full process
o  Still enables the benefits of heterogeneous scheduling and dispatch
Performance programmers can leverage non-blocking APIs
that enable DAG-like parallelization speedups
7




Experimental Setup

e Platforms:

o NVIDIA Jetson AGX Xavier (8 CPU, 1 GPU)

o  Xilinx Zynq Ultrascale+ ZCU102 (4 CPU, FPGA PL)
o Applications:

o  WIiFi TX (TX)

o Pulse Doppler radar (PD)

o Lane Detection (LD)

o  Swept across injection rates of 100 Mbps to 2000 Mbps

= |njected in application batches

e Schedulers:

o Round Robin (RR)

o Earliest Finish Time (EFT)

o Earliest Task First (ETF)

o  Runtime variant of HEFT (HEFT-RT)

o All (API-CEDR) applications leverage non-blocking APls

ﬂ! COLLEGE OF ENGINEERING
e

Electrical & Computer
Engineering




Results — Runtime Overhead ZCU102
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1500

1750 2000

Workload: 5 TX, 5 PD

Hardware: ZCU102, 3 CPU, 1 FFT,
1 MMULT

Scheduler: RR

API-CEDR: 19.52% average
reduction relative to DAG-CEDR

o Reflects runtime simplifications (no DAG
parsing, ready queue simplifications)



Results — Execution Time ZCU102

Workload: 5 PD, 5 TX
Hardware: 3 CPU, 1
FFT, 1 MMULT

ETF: 700ms/app

reduces to 425ms/app
o 7/0ms avg overhead to
1.15ms
o  Quadratic runtime in
ready queue size
Other schedulers:
200ms/app to

350ms/app
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Results — Execution Time AGX

e \Workload: 5 PD, 5 TX

e Hardware: 3 CPU, 1 GPU
o 4 CPUs available for application threads + runtime daemon

e Consistent reduction across all schedulers is likely due to reduced thread contention
& reduced runtime overhead
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Results — Execution Time with LD

Execution Time - ZCU102
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LD is quite intensive relative to PD, TX
Workload: 1 LD, 20 PD, 50 TX

Hardware:
o ZCU102: 3CPU, 8 FFT
o AGX:7CPU, 1 GPU

Complex schedulers outperform simple heuristics
AGX shows much less variation likely for similar
thread-contention reasons

12



Results — Hardware Scalability

e Workload: 1 LD, injected at 300 Mbps
(ZCU102), 500 Mbps (AGX)

e Sweep hardware configuration and scheduler

e Sweep hardware configurations from:

o ZCU102: 3 CPU 0 FFT through 3 CPU 8 FFT
o AGX:1CPU 1 GPU through 7 CPU 1 GPU

e ZCU102:
C3+F0  C3+F1 C3+F2 C3+F3 C3+F4 C3+F5 C3+F6 C3+F7 C3+F8

o Increased accelerators increases threads-per- Resource Pool
CPU, slowing overall execution Execution Time — AGX

o AGX % 900

o  Abundance of CPU cores allows for high degree &
of parallelism

e Other runtime/scheduling overhead differences
are negligible

Execution Time — ZCU102
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Conclusions & Future Work

Conclusions

e Presented a new programming methodology for the CEDR framework
e Expanded application corpus to the domain of autonomous vehicles

e Reduced runtime overhead relative to the previous runtime
o Care must be taken to avoid other threading-related bottlenecks

Future Work

e Explore lightweight, many-core CPU architectures that allow coupling
accelerators with cores tailored for accelerator management

e Continue to iterate on runtime architectures that seek to reduce total number
of contending threads
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Thank You!

Links

Project Homepage: https://ua-rcl.github.io/CEDR/
Source Code: https://github.com/UA-RCL/CEDR/

Contact

A

Joshua Mack — jmack2545@arizona.edu
Sahil Hassan — sahilhassan@arizona.edu
Ali Akoglu — akoglu@arizona.edu

Questions?
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