A

CEDR-API
Productive, Performant Programming
of Domain-Specific Embedded Systems

Joshua Mack, Serhan Gener, Sahil Hassan, H. Umut Suluhan, Ali Akoglu

Department of Electrical and Computer Engineering, University of Arizona
{imack2545, gener, sahilhassan, suluhan, akoglu}@arizona.edu

eeeeeeeeeeeeeeeeeeee
Electrical & Computer
Engineering

Motivation

Computational Power Efficiency 4

1000 m
. e
==

System on Chip

S Scalar
L Processor
' Vector
¢ Processor

Application
Specific
Kernel

GOP/s/W
>
Chip Network

—

\o

%

0.1

90 65 45 32 22 14
Technology Node (nm) \

v

e Heterogeneous computing holds a lot of potential, but it is difficult to effectively

leverage
e One approach: domain-specific SoC (DSSoC) processors

0 Restrict the scope of the problem while still enabling large performance gains
e (Goal: develop usable, domain-specific, coarse-scale embedded processors as a part

of the DARPA DSSoC program

COLLEGE OF ENGINEERING

Electrical & Computer
Engineering

A

Motivation — DSSoC Programming

A

Many heterogeneous programs are constructed in a vacuum via
offline expert analysis

Static approaches to programming heterogeneous systems are
suboptimal
o Experts are scarce; static schedules are greedy

o Scheduling preferences can adjust based on power, energy, or execution
considerations

Operating systems aren't meeting the needs of heterogeneous SoCs'

DSSoC platforms require novel compilation and runtime frameworks
to enable cooperative heterogeneous computation

COLLEGE OF ENGINEERING
Electrical & Computer
Engineering [1]1 T. Roscoe, “It's time for operating systems to rediscover hardware,” USENIX Association, Jul. 2021

CEDR' — A Compiler-Integrated, Extensible DSSoC Runtime

e Open source?, unified environment for
programming and execution on DSSoCs

e Key features: GNURadio
o Portability across numerous Linux systems [User Appication cices) | [_ Runtime | [[Accel Kernel | (" ougput Logs
o Scalability to thousands of jobs ' ' ! f
T . A l CEDR Compilation } App & PE b [PE,
o Flexibility to execute arbitrary, interleaved 1 _7| Trackers s -
. Application = 1
workloads on various accelerators CEDR Application | | | ~parser 2 .
1 1 ot 1 \ Scheduler g °
o Supports arbitrary scheduling heuristics e 8 =N
° Enab|eS |arge-SCa|e DSE and CodeSIQn Of Submission Process CEDR Daemon Process
| !
applications, schedulers, and accelerators for Shared Memory IPC
DSSoCs
i REENTARE I [FRNERER SRR [[[/] | oo INEEENI DO N |
§e 1 P Sk HEHHHHHEEE THERTE “coc:| N |
ee————x.. =R LIRITNIR IARR NI | IR I | I N
COBRAAEREERRAR T

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Ti Ti

Hardware Configurations

COLLEGE OF ENGINEERING

Electrical & Computer [1]J. Mack et al. “CEDR - A Compiler-integrated, Extensible DSSoC Runtime,” ACM Transactions on Embedded
Engineering Computing Systems (TECS), April 2022, https://doi.org/10.1145/3529257 4
[2] Project Homepage: https://ua-rcl.github.io/CEDR/

A

Limitations of Current Compilation Tooling

I

LLVM Node i
Partitioning p A

N N _1
FFT-CPU

Application
Source Code

(cic++)

for (1 = 0; i < N; i++) {
input = read_input();
outl = KERNEL;(input);
out2 = KERNEL,(input);
KERNEL3z(outl, out2);

}

COLLEGE OF ENGINEERING
Electrical & Computer
Engineering

A rvalas ompile into
o at binal
Automated Compilation flow |] FFT-Accelerator
| m N l FFT-GPU
> 10110 l
| 01001 é_] I GEMM-CPU

| Fat Binary DAG (.jSOh)] GEMM-Accelerator

Node ! \lt;rial;:e Code |
i tificati tructuri
identification [~ denitificato | restructuring GEMM-GPU
ompile into L S e
i

Handcrafted Compilation flow

,*c
O

No

)

Existing software compilation toolchain

represents applications as DAGs

o Automated transformation of C/C++ to DAGs
remains a difficult challenge
o Hand-crafting optimized DAGs is laborious

DAGs conceptually fail to capture many
desirable program structures

11bCEDR

CEDR_FFT(..); -
| -> CEDR_FFT _cpu(..); ““CE_"f’c » [IJ1J§1I1° Enabi pitom %ol
| -> CEDR_FFT_accel(..); et = |l DN cslaratian it inl = get input();
| > et cdaes I;gﬁﬁ:[:: "bCEDi Ll Shtlgﬁl:)ol‘-\l‘)_j:ct CEDR_FFT (In 1, outl) ;
TEDE_EEI\SE (GI)E;’lM C . 7 plattonnh _‘ Insert cedr.h lm Validate Compile for E‘ func(outl, out2);

- — _Cpu ()) > cedr.h — [| Apicals = 10110 Correctness }’ CEDR L std::cout << out2;
I i EEDR_G EMM_accel(..); L+ CMakeLists.txt)=} Sz s

(CIC++)

e Developed a library of hardware-agnostic API calls coupled with platform-

specific implementations

e Allows for CEDR-independent CPU-only functional verification
o Applications can trivially be executed on arbitrary CEDR-compatible platforms by adjusting
1ibCEDR-rt.so

e Includes a task synchronization methodology that preserves functional
correctness

COLLEGE OF ENGINEERING

Electrical & Computer
Engineering 6

A

APl Synchronization

A

User Code

User Code

COLLEGE OF ENGINEERING
Electrical & Computer
Engineering

' barrier = cedr_barrier_init(NUM _TASKS = 1);

; i
i // Dispatch to the CEDR runtime : appape | | 3
' enqueue_cedr_task(API_TYPE, args, &barrier) — reer 5
i // Task is scheduled and run asynchronously i ATﬂiﬁ”’ | §
: 9 . : \ Scheduler |= = §=;-
, while (barrier.tasks_done != NUM_TASKS) { ! &
.1 pthread_cond_wait(barrier.cond); :
1} :
Kernel executions within CEDR are asynchronous relative to
user applications
Users focused on correctness can leverage blocking APls
that abstract away this full process
o Still enables the benefits of heterogeneous scheduling and dispatch
Performance programmers can leverage non-blocking APIs
that enable DAG-like parallelization speedups
7

Experimental Setup

e Platforms:

o NVIDIA Jetson AGX Xavier (8 CPU, 1 GPU)

o Xilinx Zynq Ultrascale+ ZCU102 (4 CPU, FPGA PL)
o Applications:

o WIiFi TX (TX)

o Pulse Doppler radar (PD)

o Lane Detection (LD)

o Swept across injection rates of 100 Mbps to 2000 Mbps

= |njected in application batches

e Schedulers:

o Round Robin (RR)

o Earliest Finish Time (EFT)

o Earliest Task First (ETF)

o Runtime variant of HEFT (HEFT-RT)

o All (API-CEDR) applications leverage non-blocking APls

ﬂ! COLLEGE OF ENGINEERING
e

Electrical & Computer
Engineering

Results — Runtime Overhead ZCU102

Runtime Overhead

1300+

=
N
o
o

Runtime Overhead (ms)
= -
o o
Q o

o
o
o

(00}
o
o

—e— API-CEDR
—— DAG-CEDR

A

0 250 500 750 1000 1250
Injection Rate (Mbps)

COLLEGE OF ENGINEERING
Electrical & Computer
Engineering

1500

1750 2000

Workload: 5 TX, 5 PD

Hardware: ZCU102, 3 CPU, 1 FFT,
1 MMULT

Scheduler: RR

API-CEDR: 19.52% average
reduction relative to DAG-CEDR

o Reflects runtime simplifications (no DAG
parsing, ready queue simplifications)

Results — Execution Time ZCU102

Workload: 5 PD, 5 TX
Hardware: 3 CPU, 1
FFT, 1 MMULT

ETF: 700ms/app

reduces to 425ms/app
o 7/0ms avg overhead to
1.15ms
o Quadratic runtime in
ready queue size
Other schedulers:
200ms/app to

350ms/app

COLLEGE OF ENGINEERING
Electrical & Computer
Engineering

A

Avg. execution time / app.(ms)

B o ©
o o o

Avg. Scheduling overhead / app.(ms)
N
o

o

DAG-CEDR

Execution Time

API-CEDR

Execution Time

450

Avg. execution time / app.(ms)
w
o
o

0 250 500 750 1000 1250
Injection Rate (Mbps)

1500 1750 2000

Scheduling Overhead

—3——3

[—— =

0 250 500 750

1000 1250 2000

Injection Rate (Mbps)

1500 1750

Scheduling Overhead

[N
N

L
"

—
=)

©
©

=]
N

o
o

Avg. Scheduling overhead / app.(ms)
o
©

o

250 500 750 1000 1250
Injection Rate (Mbps)

1500 1750 2000

250 500 750 1000 1250 2000

Injection Rate (Mbps)

1500 1750

10

Results — Execution Time AGX

e \Workload: 5 PD, 5 TX

e Hardware: 3 CPU, 1 GPU
o 4 CPUs available for application threads + runtime daemon

e Consistent reduction across all schedulers is likely due to reduced thread contention
& reduced runtime overhead

Execution Time — DAG-CEDR Execution Time — API-CEDR
W

m ETF
A EFT
¢ HEFTgrr

~
o

(2]
o

wv
o

N
o

A EFT
m ETF
¢ HEFTRr

Avg. execution time / app.(ms)

Avg. execution time / app.(ms)

w
o

0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Injection Rate (Mbps) Injection Rate (Mbps)

COLLEGE OF ENGINEERING
Electrical & Computer
Engineering 11

A

Results — Execution Time with LD

Execution Time - ZCU102

= =i RR

- ~0— °
s EFT
Z 8000 my ETE
¢ HEFTar

6000

(ms)

execution time / app
5
o
o

. 2000

Avg

0 250 500 750 1000 1250 1500 1750 2000
Injection Rate (Mbps)

Execution Time - AGX

o
o
o

s EFT
s ETF
¢ HEFTgr

Avg. execution time / app.(ms)
N
o
(=}

0 250 500 750 1000 1250 1500 1750 2000

Injection Rate (Mbps)

COLLEGE OF ENGINEERING
Electrical & Computer
Engineering

LD is quite intensive relative to PD, TX
Workload: 1 LD, 20 PD, 50 TX

Hardware:
o ZCU102: 3CPU, 8 FFT
o AGX:7CPU, 1 GPU

Complex schedulers outperform simple heuristics
AGX shows much less variation likely for similar
thread-contention reasons

12

Results — Hardware Scalability

e Workload: 1 LD, injected at 300 Mbps
(ZCU102), 500 Mbps (AGX)

e Sweep hardware configuration and scheduler

e Sweep hardware configurations from:

o ZCU102: 3 CPU 0 FFT through 3 CPU 8 FFT
o AGX:1CPU 1 GPU through 7 CPU 1 GPU

e ZCU102:
C3+F0 C3+F1 C3+F2 C3+F3 C3+F4 C3+F5 C3+F6 C3+F7 C3+F8

o Increased accelerators increases threads-per- Resource Pool
CPU, slowing overall execution Execution Time — AGX

o AGX % 900

o Abundance of CPU cores allows for high degree &
of parallelism

e Other runtime/scheduling overhead differences
are negligible

Execution Time — ZCU102

.
12000 a

2000

= 600

Resource Pool

COLLEGE OF ENGINEERING
!A! Electrical &Computel‘ C1+G1 C2+G1 C3+G1 C4+G1 C5+G1 C6+G1 C7+G1
‘| Engineering 13

Conclusions & Future Work

Conclusions

e Presented a new programming methodology for the CEDR framework
e Expanded application corpus to the domain of autonomous vehicles

e Reduced runtime overhead relative to the previous runtime
o Care must be taken to avoid other threading-related bottlenecks

Future Work

e Explore lightweight, many-core CPU architectures that allow coupling
accelerators with cores tailored for accelerator management

e Continue to iterate on runtime architectures that seek to reduce total number
of contending threads

EEEEEEEEEEEEEEEEEEEE
Electrical & Computer
Engineering

A

14

Thank You!

Links

Project Homepage: https://ua-rcl.github.io/CEDR/
Source Code: https://github.com/UA-RCL/CEDR/

Contact

A

Joshua Mack — jmack2545@arizona.edu
Sahil Hassan — sahilhassan@arizona.edu
Ali Akoglu — akoglu@arizona.edu

Questions?

EEEEEEEEEEEEEEEEEEEE
Electrical & Computer
Engineering

15

