
CEDR-API
Productive, Performant Programming

of Domain-Specific Embedded Systems

Joshua Mack, Serhan Gener, Sahil Hassan, H. Umut Suluhan, Ali Akoglu

Department of Electrical and Computer Engineering, University of Arizona
{jmack2545, gener, sahilhassan, suluhan, akoglu}@arizona.edu



Motivation

● Heterogeneous computing holds a lot of potential, but it is difficult to effectively 
leverage

● One approach: domain-specific SoC (DSSoC) processors
○ Restrict the scope of the problem while still enabling large performance gains

● Goal: develop usable, domain-specific, coarse-scale embedded processors as a part 
of the DARPA DSSoC program

2



Motivation – DSSoC Programming
● Many heterogeneous programs are constructed in a vacuum via 

offline expert analysis

● Static approaches to programming heterogeneous systems are 
suboptimal

○ Experts are scarce; static schedules are greedy

○ Scheduling preferences can adjust based on power, energy, or execution 
considerations

● Operating systems aren't meeting the needs of heterogeneous SoCs1

● DSSoC platforms require novel compilation and runtime frameworks 
to enable cooperative heterogeneous computation

3[1] T. Roscoe, “It’s time for operating systems to rediscover hardware,” USENIX Association, Jul. 2021



CEDR1 – A Compiler-Integrated, Extensible DSSoC Runtime

4

[1] J. Mack et al. “CEDR - A Compiler-integrated, Extensible DSSoC Runtime,” ACM Transactions on Embedded 
Computing Systems (TECS), April 2022, https://doi.org/10.1145/3529257
[2] Project Homepage: https://ua-rcl.github.io/CEDR/

● Open source2, unified environment for 
programming and execution on DSSoCs

● Key features:
○ Portability across numerous Linux systems
○ Scalability to thousands of jobs
○ Flexibility to execute arbitrary, interleaved 

workloads on various accelerators
○ Supports arbitrary scheduling heuristics

● Enables large-scale DSE and codesign of 
applications, schedulers, and accelerators for 
DSSoCs



Limitations of Current Compilation Tooling

● Existing software compilation toolchain 
represents applications as DAGs
○ Automated transformation of C/C++ to DAGs 

remains a difficult challenge
○ Hand-crafting optimized DAGs is laborious

● DAGs conceptually fail to capture many 
desirable program structures

5



libCEDR

6

● Developed a library of hardware-agnostic API calls coupled with platform-
specific implementations

● Allows for CEDR-independent CPU-only functional verification
○ Applications can trivially be executed on arbitrary CEDR-compatible platforms by adjusting 

libCEDR-rt.so

● Includes a task synchronization methodology that preserves functional 
correctness

CEDR_FFT(…);
| -> CEDR_FFT_cpu(…);
| -> CEDR_FFT_accel(…);
| -> …
CEDR_GEMM(…);
| -> CEDR_GEMM_cpu(…);
| -> CEDR_GEMM_accel(…);
| -> …
…

in1 = get_input();
CEDR_FFT(in1, out1);
func(out1, out2);
std::cout << out2;



API Synchronization

7

User Code

User Code

Blocking API Call

barrier = cedr_barrier_init(NUM_TASKS = 1);

// Dispatch to the CEDR runtime
enqueue_cedr_task(API_TYPE, args, &barrier)
// Task is scheduled and run asynchronously

while (barrier.tasks_done != NUM_TASKS) {
pthread_cond_wait(barrier.cond);

}

● Kernel executions within CEDR are asynchronous relative to 

user applications

● Users focused on correctness can leverage blocking APIs 

that abstract away this full process
○ Still enables the benefits of heterogeneous scheduling and dispatch

● Performance programmers can leverage non-blocking APIs 

that enable DAG-like parallelization speedups



● Platforms:
○ NVIDIA Jetson AGX Xavier (8 CPU, 1 GPU)
○ Xilinx Zynq Ultrascale+ ZCU102 (4 CPU, FPGA PL)

● Applications:
○ WiFi TX (TX)
○ Pulse Doppler radar (PD)
○ Lane Detection (LD)
○ Swept across injection rates of 100 Mbps to 2000 Mbps

■ Injected in application batches

● Schedulers:
○ Round Robin (RR)
○ Earliest Finish Time (EFT)
○ Earliest Task First (ETF)
○ Runtime variant of HEFT (HEFT-RT)

● All (API-CEDR) applications leverage non-blocking APIs

Experimental Setup

8



Results – Runtime Overhead ZCU102

● Workload: 5 TX, 5 PD
● Hardware: ZCU102, 3 CPU, 1 FFT, 

1 MMULT
● Scheduler: RR
● API-CEDR: 19.52% average 

reduction relative to DAG-CEDR
○ Reflects runtime simplifications (no DAG 

parsing, ready queue simplifications)

9

Runtime Overhead



Results – Execution Time ZCU102

10

● Workload: 5 PD, 5 TX
● Hardware: 3 CPU, 1 

FFT, 1 MMULT 
● ETF: 700ms/app 

reduces to 425ms/app
○ 70ms avg overhead to 

1.15ms
○ Quadratic runtime in 

ready queue size

● Other schedulers: 
200ms/app to 
350ms/app

DAG-CEDR
Execution Time

Scheduling Overhead

API-CEDR

Scheduling Overhead

Execution Time



Results – Execution Time AGX

● Workload: 5 PD, 5 TX
● Hardware: 3 CPU, 1 GPU

○ 4 CPUs available for application threads + runtime daemon

● Consistent reduction across all schedulers is likely due to reduced thread contention 
& reduced runtime overhead

11

Execution Time – DAG-CEDR Execution Time – API-CEDR



Results – Execution Time with LD

12

Execution Time - ZCU102

Execution Time - AGX ● LD is quite intensive relative to PD, TX
● Workload: 1 LD, 20 PD, 50 TX
● Hardware:

○ ZCU102: 3 CPU, 8 FFT
○ AGX: 7 CPU, 1 GPU

● Complex schedulers outperform simple heuristics
● AGX shows much less variation likely for similar 

thread-contention reasons



Results – Hardware Scalability

13

● Workload: 1 LD, injected at 300 Mbps 
(ZCU102), 500 Mbps (AGX)

● Sweep hardware configuration and scheduler
● Sweep hardware configurations from:

○ ZCU102: 3 CPU 0 FFT through 3 CPU 8 FFT
○ AGX: 1 CPU 1 GPU through 7 CPU 1 GPU

● ZCU102:
○ Increased accelerators increases threads-per-

CPU, slowing overall execution

● AGX:
○ Abundance of CPU cores allows for high degree 

of parallelism

● Other runtime/scheduling overhead differences 
are negligible

Execution Time – ZCU102

Execution Time – AGX



Conclusions & Future Work
Conclusions
● Presented a new programming methodology for the CEDR framework
● Expanded application corpus to the domain of autonomous vehicles
● Reduced runtime overhead relative to the previous runtime

○ Care must be taken to avoid other threading-related bottlenecks 

Future Work
● Explore lightweight, many-core CPU architectures that allow coupling 

accelerators with cores tailored for accelerator management
● Continue to iterate on runtime architectures that seek to reduce total number 

of contending threads

14



Thank You!
Links
● Project Homepage: https://ua-rcl.github.io/CEDR/
● Source Code: https://github.com/UA-RCL/CEDR/

Contact
● Joshua Mack – jmack2545@arizona.edu
● Sahil Hassan – sahilhassan@arizona.edu
● Ali Akoglu – akoglu@arizona.edu

15

Questions?


