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Goal and Motivation
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Machine 
Learning 
Models

PyTorch offers productive GPU-based 
deployment experience

A steep increase in computation & 
memory demand

No path forward for deploying ML models on 
systems offering balance between throughput 

and energy efficiency

Machine 
Learning 
Models

Aim: Productive PyTorch model deployment 
on heterogeneous SoCs

○ hardware agnostic application 
development

○ balance trade-off between throughput and 
energy efficiency

○ explore SoC configurations for PyTorch
based workflows

[1] Systems, C. (2022, August 30). Cerebras Architecture Deep Dive: First look inside the HW/SW co-design for Deep Learning. Medium.

1



3

Technical Contributions

Model 
Transformation 

Tool
Heterogeneous Runtime 

Compatible Models

Runtime 
Framework

Hardware agnostic model development and deployment experience 
for PyTorch developers across rich set of off-the-shelf SoC platforms 
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CEDR1 – A Compiler-Integrated, Extensible DSSoC Runtime

[1] J. Mack et al. “CEDR-API: Productive, Performant Programming of Domain-Specific Embedded Systems,” IEEE 
International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2023, 
https://doi.org/10.1109/IPDPSW59300.2023.00016 
[2] Project Homepage: https://ua-rcl.github.io/projects/cedr/

● Open source2, unified environment for programming 
and execution on heterogenous SoCs

● Key features:
○ Provides users with an abstraction layer through APIs 
○ Refactors applications into a sequence of hardware 

agnostic function calls 
○ Generates application representation that allows run 

time system invoke each function call on its 
supported processing elements  

○ Flexible to execute arbitrary, interleaved workloads 
on various accelerators

○ Portable across off the shelf SoC platforms 
○ Avoids requiring users to become hardware experts

Need for a transformation tool that can translate
PyTorch models into a CEDR compatible application representation



Transformation Flow: Step 1
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• Extracts information 
regarding each layer

• Distinguishes layers from 
each other with distinct 
attributes



Transformation Flow: Step 2
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• Obtains DAG 
based on  input-
output 
relationship 
between layers

• Allows building 
C++ based model 
while respecting 
the dataflow and 
layer attributes 



Transformation Flow: Step 3
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• Maps each layer in the 
DAG to equivalent C++ 
implementation

• Serves as a baseline model 
for replacing key kernels 
with hardware agnostic 
CEDR compatible API 
calls



Transformation Flow: Step 4
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• Key kernels are replaced with CEDR compatible 
hardware agnostic API calls through function inlining

• Generates final C++ model with API implementations 
that can be compiled and executed with CEDR. 



Transformation Flow: Step 5
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• C++ model with API calls is compiled and prepared 
for execution on heterogenous SoC 

• Integrated scheduler makes task to processing 
element mapping decisions based on current state 
of system resources and performance goals. 



10

Experimental Setup

[1] J. Mack et al. “Performant, multi-objective scheduling of highly interleaved task graphs on heterogeneous system on 
chip devices,” IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 9, pp. 2148–2162, 2022
https://doi.org/10.1109/TPDS.2021.3135876

Hardware Composition
• 3 CPUs
• Accelerators (Conv2D, 

FFT, ZIP)

Scheduling Heuristics
• Earliest Finish Time (EFT)
• Earliest Time to Finish (ETF)
• Heterogeneous Earliest 

Finish Time (HEFT-RT1)

Workload Composition
Object Detection
Visual Geometry Group
Speech Classification
Wifi-TX
Pulse Doppler

Xilinx Zynq UltraScale+ 
MPSoC ZCU102



Cross-Domain Applications
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• Saturation trend with 
respect to workload 
complexity (injection rate): 
oversubscribed system

• Resource rich 
configuration saturates 
latest 

• Execution time reduces 
with the increased degree 
of heterogeneity 



PyTorch Applications
CEDR can execute multiple models concurrently on the 
target SoC in dynamically arriving workload scenarios

First 10 seconds of the Gantt chart for multiple PyTorch applications 
running on 3 CPUs, 1 C2D, and 1 ZIP accelerator with EFT scheduler



Demo
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Related Work
Other works in the literature offer system-level solutions and allow running 
neural network workloads on heterogeneous SoCs: 
● Zhong et al.1 leverages FPGA accelerators and NEON engine cores to offload 

convolution workloads, targeting experienced engineers
● Shea et al.2 designs a hardware accelerator specifically for neural network 

workloads and introduces heterogeneity-aware scheduler
● Dagli et al.3 implements layer-level design time scheduling, aiming to strike a 

balance between energy and performance trade-offs. 
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[1] G. Zhong et al. “Synergy: An hw/sw framework for high throughput cnns on embedded heterogeneous soc,” ACM 
Transactions on Embedded Computing Systems (TECS), vol. 18, no. 2, pp. 1–23, 2019.
[2] C. Shea et al. “Heterogeneous scheduling of deep neural networks for low-power real-time designs,” ACM Journal on 
Emerging Technologies in Computing Systems (JETC), vol. 15, no. 4, pp. 1–31, 2019.
[3] I. Dagli et al. “Axonn:energy-aware execution of neural network inference on multi-accelerator heterogeneous 
socs,” Proceedings of the 59th ACM/IEEE Design Automation Conference, 2022, pp. 1069–1074.

Proposed transformation tool is unique when coupled with CEDR as other  
methods fall short in terms of programmer productivity and can not cope 

with dynamically arriving workload scenarios 



Conclusions and Future Work
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• For the first time, PyTorch application 
developers have access to FPGA-based 
execution  without having to become 
hardware experts 

○ balance trade-off between 
throughput and energy efficiency

○ explore SoC configurations for 
dynamic workloads

• Next Step
○ Generalize the framework for 

supporting wide range of ML 
models.



Thank you
● Questions? 
● Links 

○ Website: https://ua-rcl.github.io/projects/cedr/ 
○ Source code: https://github.com/UA-RCL/CEDR/

● Contact 
○ Umut Suluhan: suluhan@arizona.edu
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BACKUP
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Results - BACKUP

18

Scheduler and Resource Design-Space Exploration

• Sophisticated schedulers make better scheduling decisions with the 
increase in resource pool since it considers execution time of all 
processing elements. 



Results - BACKUP
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• Rich resource pool enables system to overlap executions of applications leading to faster 
execution per instance with the increase in the number of instances running simultaneously.

Scheduler comparison for increasing number of instances


