
PyTorch and CEDR: Enabling Deployment
of Machine Learning Models on

Heterogeneous Computing Systems
Umut Suluhan1, Serhan Gener1, Alexander Fusco1,

Fatih Ugurdag2, and Ali Akoglu1

1University of Arizona, 2Ozyegin University

Goal and Motivation

2

Machine
Learning
Models

PyTorch offers productive GPU-based
deployment experience

A steep increase in computation &
memory demand

No path forward for deploying ML models on
systems offering balance between throughput

and energy efficiency

Machine
Learning
Models

Aim: Productive PyTorch model deployment
on heterogeneous SoCs

○ hardware agnostic application
development

○ balance trade-off between throughput and
energy efficiency

○ explore SoC configurations for PyTorch
based workflows

[1] Systems, C. (2022, August 30). Cerebras Architecture Deep Dive: First look inside the HW/SW co-design for Deep Learning. Medium.

1

3

Technical Contributions

Model
Transformation

Tool
Heterogeneous Runtime

Compatible Models

Runtime
Framework

Hardware agnostic model development and deployment experience
for PyTorch developers across rich set of off-the-shelf SoC platforms

4

CEDR1 – A Compiler-Integrated, Extensible DSSoC Runtime

[1] J. Mack et al. “CEDR-API: Productive, Performant Programming of Domain-Specific Embedded Systems,” IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2023,
https://doi.org/10.1109/IPDPSW59300.2023.00016
[2] Project Homepage: https://ua-rcl.github.io/projects/cedr/

● Open source2, unified environment for programming
and execution on heterogenous SoCs

● Key features:
○ Provides users with an abstraction layer through APIs
○ Refactors applications into a sequence of hardware

agnostic function calls
○ Generates application representation that allows run

time system invoke each function call on its
supported processing elements

○ Flexible to execute arbitrary, interleaved workloads
on various accelerators

○ Portable across off the shelf SoC platforms
○ Avoids requiring users to become hardware experts

Need for a transformation tool that can translate
PyTorch models into a CEDR compatible application representation

Transformation Flow: Step 1

5

• Extracts information
regarding each layer

• Distinguishes layers from
each other with distinct
attributes

Transformation Flow: Step 2

6

• Obtains DAG
based on input-
output
relationship
between layers

• Allows building
C++ based model
while respecting
the dataflow and
layer attributes

Transformation Flow: Step 3

7

• Maps each layer in the
DAG to equivalent C++
implementation

• Serves as a baseline model
for replacing key kernels
with hardware agnostic
CEDR compatible API
calls

Transformation Flow: Step 4

8

• Key kernels are replaced with CEDR compatible
hardware agnostic API calls through function inlining

• Generates final C++ model with API implementations
that can be compiled and executed with CEDR.

Transformation Flow: Step 5

9

• C++ model with API calls is compiled and prepared
for execution on heterogenous SoC

• Integrated scheduler makes task to processing
element mapping decisions based on current state
of system resources and performance goals.

10

Experimental Setup

[1] J. Mack et al. “Performant, multi-objective scheduling of highly interleaved task graphs on heterogeneous system on
chip devices,” IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 9, pp. 2148–2162, 2022
https://doi.org/10.1109/TPDS.2021.3135876

Hardware Composition
• 3 CPUs
• Accelerators (Conv2D,

FFT, ZIP)

Scheduling Heuristics
• Earliest Finish Time (EFT)
• Earliest Time to Finish (ETF)
• Heterogeneous Earliest

Finish Time (HEFT-RT1)

Workload Composition
Object Detection
Visual Geometry Group
Speech Classification
Wifi-TX
Pulse Doppler

Xilinx Zynq UltraScale+
MPSoC ZCU102

Cross-Domain Applications

11

• Saturation trend with
respect to workload
complexity (injection rate):
oversubscribed system

• Resource rich
configuration saturates
latest

• Execution time reduces
with the increased degree
of heterogeneity

PyTorch Applications
CEDR can execute multiple models concurrently on the
target SoC in dynamically arriving workload scenarios

First 10 seconds of the Gantt chart for multiple PyTorch applications
running on 3 CPUs, 1 C2D, and 1 ZIP accelerator with EFT scheduler

Demo

13

Related Work
Other works in the literature offer system-level solutions and allow running
neural network workloads on heterogeneous SoCs:
● Zhong et al.1 leverages FPGA accelerators and NEON engine cores to offload

convolution workloads, targeting experienced engineers
● Shea et al.2 designs a hardware accelerator specifically for neural network

workloads and introduces heterogeneity-aware scheduler
● Dagli et al.3 implements layer-level design time scheduling, aiming to strike a

balance between energy and performance trade-offs.

14

[1] G. Zhong et al. “Synergy: An hw/sw framework for high throughput cnns on embedded heterogeneous soc,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 18, no. 2, pp. 1–23, 2019.
[2] C. Shea et al. “Heterogeneous scheduling of deep neural networks for low-power real-time designs,” ACM Journal on
Emerging Technologies in Computing Systems (JETC), vol. 15, no. 4, pp. 1–31, 2019.
[3] I. Dagli et al. “Axonn:energy-aware execution of neural network inference on multi-accelerator heterogeneous
socs,” Proceedings of the 59th ACM/IEEE Design Automation Conference, 2022, pp. 1069–1074.

Proposed transformation tool is unique when coupled with CEDR as other
methods fall short in terms of programmer productivity and can not cope

with dynamically arriving workload scenarios

Conclusions and Future Work

15

• For the first time, PyTorch application
developers have access to FPGA-based
execution without having to become
hardware experts

○ balance trade-off between
throughput and energy efficiency

○ explore SoC configurations for
dynamic workloads

• Next Step
○ Generalize the framework for

supporting wide range of ML
models.

Thank you
● Questions?
● Links

○ Website: https://ua-rcl.github.io/projects/cedr/
○ Source code: https://github.com/UA-RCL/CEDR/

● Contact
○ Umut Suluhan: suluhan@arizona.edu

16

BACKUP

17

Results - BACKUP

18

Scheduler and Resource Design-Space Exploration

• Sophisticated schedulers make better scheduling decisions with the
increase in resource pool since it considers execution time of all
processing elements.

Results - BACKUP

19

• Rich resource pool enables system to overlap executions of applications leading to faster
execution per instance with the increase in the number of instances running simultaneously.

Scheduler comparison for increasing number of instances

