PyTorch and CEDR: Enabling Deployment
of Machine Learning Models on
Heterogeneous Computing Systems

Umut Suluhan!, Serhan Gener!, Alexander Fusco,
Fatih Ugurdag? and Ali Akoglu'

1University of Arizona, ?Ozyegin University

EEEEEEEEEEEEEEEEEEEE N
ZAS Electrical & Computer C@« :
° d and Autol ic Computing Center

Engineering Clou utonomic Computing Cen

Goal and Motivation
PyTorch offers productive GPU-based

deployment experience
Machine J Machine
Learning . S Learning
Models O PyTorCh " Models
\\

\ .
A _ _ o No path forward for deploying ML models on
SUCSPRISIDASE 12 compdutatmn systems offering balance between throughput
M::S::Zizne reeq?j?ms1 and energy efficiency

O

100,000 . . .
: 2018 2019 . Aim: Productive PyTorch model deployment
o e MT-NLG (530B
1 o crra e on heterogeneous SoCs
S %0 e T5(11B) . 5 .
: i O hardware agnostic application
8 100 e Megatron-
g cen development
E o «BERT Large (340M) O balance trade-off between throughput and
2, [energy efficiency

1 10 100 1,000 10,000 100,000
Model memory requirement, GB . .
A | cousceor encinesning ™ O explore SoC configurations for PyTorch
Electrical & Computer
‘ Ergihecring based workflows ,

[1] Systems, C. (2022, August 30). Cerebras Architecture Deep Dive: First look inside the HW/SW co-design for Deep Learning. Medium.

Technical Contributions

Runtime < ig>
Framework (a8, SN

-

}))) Model
 —=T ode
1ﬁ| Transformation

f\) _ Tool

Heterogeneous Runtime

O PyTO rch Compatible Models

Hardware agnostic model development and deployment experience
for PyTorch developers across rich set of off-the-shelf SoC platforms

COLLEGE OF ENGINEERING
Electrical & Computer
Engineering

A

CEDR'!- A Compiler-Integrated, Extensible DSSoC Runtime

< % g‘% x >GNURadio

e Open source? unified environment for programming ' ‘

and execution on heterogenous SoCs ‘» ¢ PyTorch
o Key features: e 2 RISC
o Provides users with an abstraction layer through APIs —
. . . User Application (CIC++) untime ccel. Remel | | gutput Logs
o Refactors applications into a sequence of hardware “ 1 S ,, ;
agnostic function calls CEDR Compilation oo & e > - 7
. . . Trackers
o Generates application representation that allows run | Appﬁcaﬂon/' 2 Ll
time system invoke each function call on its CEDRAT"“““ Parser < . :
. Scheduler 2
supported processing elements i 4Ry,
o Flexible to execute arbitrary, interleaved workloads S“b““ss"i“ Process CEDR"““*T“ Process
on various accelerators
Shared Memory IPC
o Portable across off the shelf SoC platforms
o Avoids requiring users to become hardware experts
Need for a transformation tool that can translate
PyTorch models into a CEDR compatible application representation
COLLEGE OF ENGINEERING [1] J. Mack et al. “CEDR-API: Productive, Performant Programming of Domain-Specific Embedded Systems,” IEEE
ZAS Eleqtrical_&COmPUter International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2023,
'| Engineering https://doi.org/10.1109/IPDPSW59300.2023.00016 p

[2] Project Homepage: https://ua-rcl.github.io/projects/cedr/

Transformat1on Flow: Step 1

1 })))' .

stride, padding):
return nn.Sequential(
nn.Conv2d(in_channel, out_channel,

nn.ReLU())
class Model(nn.Module):
def __init__(self):
self.conv_relu = conv2d(3, 8, 3)
10 self.linear = nn.Linear(32, 16)

1
2
3
4
5 kernel_size, stride, padding)
6
7
8
9

def conv2d(in_channel, out_channel, kernel_size,

11 self.maxpool = nn.MaxPool2d(2, 2)

12| | def forward(self, x):

13 conv1 = self.conv_relu(x)

14 pool1 = self.maxpool(conv1)
16 linear1 = self.linear(pool1)
16 return linear1

COLLEGE OF ENGINEERING
ZAS | Electrical & Computer

Engineering

STEP 1

éequential“: "yes", \

"name": "conv_relu",
"length": 2,
"0": {"name":
"conv_relu_0",
"type": "Conv2d",
"in_channels: 3,
"out_channels": 8,
"kernel_size": [3,3]
I
"1": {"name":
"conv_relu_1",
"type": "RelLU" }}

{"sequential": "no",
"name": "linear",
"type": "Linear",
"in_features": 32,
"out_features": 16}

{"sequential": "no",
"name": "maxpool”,

"Qpe". "MaxPool2d"} /

Extracts information
regarding each layer

Distinguishes layers from
each other with distinct
attributes

Transformat1on Flow: Step 2

}))) ﬁ.

def conv2d(in_channel, out_channel, kernel_size,

stride, padding):
return nn.Sequential(
nn.Conv2d(in_channel, out_channel,
kernel_size, stride, padding)
nn.ReLU())

class Model(nn.Module):

def __init__(self):
self.conv_relu = conv2d(3, 8, 3)

self.linear = nn.Linear(32, 16)

self.maxpool = nn.MaxPool2d(2, 2)

def forward(self, x):
conv1 = self.conv_relu(x)
pool1 = self.maxpool(conv1)
linear1 = self.linear(pool1)

return linear1

A

STEP 1

éequential": "yes", \

"name": "conv_relu",
"length": 2,
IIOII: {"name":
"conv_relu_0",
"type": "COI’\VZd",
"in_channels: 3,

~

name": "conv_relu",

|nput". "x",
"output": "conv1",
"next": "maxpool”,
"sequential": "yes",
"length": 2,
"0": {"name":
"conv_relu_0",

"type": "COHVZd",

"in_channels: 3,

{"sequential": "no",
"name": "linear",
"type": "Linear",
"in_features": 32,
"out_features": 16}

{"sequential": "no
"name": "maxpool”,

(type: "MaxPool2d"y

COLLEGE OF ENGINEERING
Electrical & Computer
Engineering

"out_channels": 8, "out_channels": 8,
"kernel_size": [3,3] "kernel_size": [3,3] },
¥ sTep2 |"1": {"name":
"1": {"name": »{"conv_relu_1",
"conv_relu_1", "type": "RelLU" }}
"type": "ReLU" }}
{name" "maxpool”,

"input": "conv1",
"output": "pooll”,
"next": "linear",
"sequential": "no"
"type": "Maxpool2d"}

{"name": "linear",
"input": "pooll”,
"output": "linear1",
"next": "NONE",
"sequential": "no",

We"z "Linear"} /

Obtains DAG
based on input-
output
relationship
between layers

Allows building
C++ based model
while respecting
the dataflow and
layer attributes

Transformation Flow: Step 3

A

"name": "conv_relu", \
"input": "x",
"output": "conv1",
"next": "maxpool”,
"sequential": "yes",
"length": 2,
IIOII: {llnamell:
"conv_relu_0",
"type": "Conv2d",
"in_channels: 3,
"out_channels": 8,
"kernel_size": [3,3] },
Illll: {llnamell:
"conv_relu_1",
"type": nReLU" }}

{"name": "maxpool",
"input": "conv1",
Iloutputll: llpoolllll
"next": "linear",
"sequential": "no"
"type": "Maxpool2d"}

{"name": "linear",

Ilinputll: llpoollll’
"output": "linearl",
"next": "NONE",

"sequential": "no",

W)e“: "Linear"}

J

COLLEGE OF ENGINEERING
Electrical & Computer
Engineering

STEP 3

© ©® N O A WN =

-
- O

12

ReLU* relu = new ReLU();

Linear* linear = new Linear(32, 16);
Maxpool2d* maxpool = new Maxpool2d();
Module* module = new Module();
module->add(*conv_relu_0);
module->add(*linear);
module->filter_assign();

x = conv_relu_0->forward(x);

Tensor3D* conv1 = relu->forward(x); |

Tensor2D* linear1 = linear->forward(pool1);|

Conv2d* conv_relu_0 = new Conv2d(3, 8, 3);

Tensor3D* pool1 = maxpool->forward(conv1);

Maps each layer in the
DAG to equivalent C++
implementation

Serves as a baseline model
for replacing key kernels
with hardware agnostic

CEDR compatible API
calls

Transformation Flow: Step 4

A

COLLEGE OF ENGINEERING []

Conv2d* conv_relu_0 =new Conv2d(3, 8, 3);
ReLU* relu =new ReLU();

Linear* linear = new Linear(32, 16);
Maxpool2d* maxpool = new Maxpool2d();
Module* module = new Module();
module->add(*conv_relu_0);
module->add(*linear);
module->filter_assign();

© ©® N O O A W N

x = conv_relu_0->forward(x);

—
o

Convid

BatchNorm1d

Maxpool1d

Linear

Conv2d

AdaptiveAvgPool2d

Maxpool2d

Upsample2d

© O N O O B~ W N

ensor3D* conv1 = relu->forward(x); |

=
=

Tensor3D* pool1 = maxpool->forward(conv1);
[Tensor2D* linear1 = linear->forward(pool1);|———

pa
N

L

Function Inlining J

1

void conv(float *in, float *filter, float *bias, float *out, int height, int width,

int kernel_size, int filter_number, int in_channel){

STEP 4

for(int i = 0; i < filter_number; i++){
/I Memory allocation operations
for(int j = 0; j < in_channel; j++){
float *conv_output = (float *) malloc (sizeof (float) * height * width);
CEDR_CONV_2D(&(in[j * height * width]), height, width,
(filter[((i * in_channel + j) * kernel_size * kernel_size)]),
kernel_size, conv_output);
CEDR_ZIP(&conv_output, &(out[(i * height * width)]),
&(out[(i * height * width)]), height * width / 2, ZIP_ADD);
&(out[(i * height * width)]), height * width / 2, ZIP_ADD);}}}

void linear(float *in, float *filter, float *bias, float *out, int channel,

int in_channel, int out_channel){

float*filter_t = (float*) malloc (sizeof (float) * in_channel * out_channel);
transpose_linear_weight(filter, filter_t, out_channel, in_channel);

/I Tensor manupilations

CEDR_GEMM(in, filter_t, out, channel, in_channel, out_channel);

/I Tensor manupilations}

* Key kernels are replaced with CEDR compatible
hardware agnostic API calls through function inlining

Electrical & Computer
Engineering

Generates final C++ model with API implementations
that can be compiled and executed with CEDR.

Transformation Flow: Step 5

=9

© O N O 0 A~ W N

A

void conv(float *in, float *filter, float *bias, float *out, int height, int width,

int kernel_size, int filter_number, int in_channel){

for(inti = 0; i < filter_number; i++){
/I Memory allocation operations
for(int j = 0; j < in_channel; j++){
float *conv_output = (float *) malloc (sizeof (float) * height * width);
CEDR_CONV_2D(&(in[j * height * width]), height, width,
(filter[((i * in_channel + j) * kernel_size * kernel_size)]),
kernel_size, conv_output);
CEDR_ZIP(&conv_output, &(out[(i * height * width)]),
&(out[(i * height * width)]), height * width / 2, ZIP_ADD);
&(out[(i * height * width)]), height * width / 2, ZIP_ADD);}}}

void linear(float *in, float *filter, float *bias, float *out, int channel,

int in_channel, int out_channel){

float*filter_t = (float*) malloc (sizeof (float) * in_channel * out_channel);
transpose_linear_weight(filter, filter_t, out_channel, in_channel);

/I Tensor manupilations

CEDR_GEMM(in, filter_t, out, channel, in_channel, out_channel);

/I Tensor manupilations}

Electrical & Computer
Engineering

| COLLEGE OF ENGINEERING

Runtime Accel. Kernel

User Application (CIC++ S
ik () Configuration Binaries

Output Logs

1 1 l

1

CEDR Compilation App & PE

/ Trackers

Application

Parser
\ Scheduler

CEDR Application

CEDR Job

Submission Process CEDR Daemon Process

speasyl 1310\ I3d

Shared Memory IPC

C++ model with API calls

is compiled and prepared

for execution on heterogenous SoC

Integrated scheduler makes task to processing
element mapping decisions based on current state

of system resources and performance goals.

Experimental Setup

Xilinx Zynq UltraScale+
'MPSoC ZCU102

Hardware Composition _
« 3CPUs)

* Accelerators (Conv2D,
FFT, ZIP)

<~ _Workload Composition

e . Sch eduling Heuristics
T :"‘j“Ob]ect Detection

e Earliest Finish Time (EFT)
 Earliest Time to Finish (ETF)
* Heterogeneous Earliest

Finish Time (HEFT-RT?)

U “Visual Geometry Group

) Speech Classification
VY Wifi-TX =

Pulse Doppl.er ((®)

COLLEGE OF ENGINEERING

Electrical & Computer [1]]J. Mack et al. “Performant, multi-objective scheduling of highly interleaved task graphs on heterogeneous system on
Engineering chip devices,” IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 9, pp. 2148-2162, 2022 10
https://doi.org/10.1109/TPDS.2021.3135876

A

Cross-Domain Applications

@ HEFT RT

(s)'ddy / awi] uoi3ndax3y ‘BAY
(@
i

COLLEGE OF ENGINEERING

A

Electrical & Computer
Engineering

Saturation trend with
respect to workload

complexity (injection rate):

oversubscribed system

Resource rich

configuration saturates
latest

Execution time reduces
with the increased degree
of heterogeneity

11

PyTorch Applications

CEDR can execute multiple models concurrently on the
target SoC in dynamically arriving workload scenarios

% .) | BEN VGG WM ObjectDetection WEN Speech
}») ﬂ

c | O O A I |
c2 1 RO AR Y Y T Y I
cu [T NRNR A0 N0 WA NI AR
czo1 [NRNN NN A0 URRRHAN DO 0 HORR OO AN
2w THEEHE D H P HR

0 2000 4000 6000 8000 10000
Time (ms)

g L
o

Processor

First 10 seconds of the Gantt chart for multiple PyTorch applications
oLt o eI running on 3 CPUs, 1 C2D, and 1 ZIP accelerator with EFT scheduler

Electrical & Computer
Engineering

A

Demo

(torch) suluhan@engr-rcll7g:/localhome/suluhan/temp/demo/applications/APIApps/pytorch/frontend$

COLLEGE OF ENGINEERING

A Electrical & Computer
‘| Engineering

Terminal

root@e9a9417093c2: ~/repository/applications/APIAp.

Terminal

Terminal

Terminal

13

Related Work

Other works in the literature offer system-level solutions and allow running

neural network workloads on heterogeneous SoCs:

e Zhong et al.!leverages FPGA accelerators and NEON engine cores to offload
convolution workloads, targeting experienced engineers

e Shea et al.?2designs a hardware accelerator specifically for neural network
workloads and introduces heterogeneity-aware scheduler

e Dagli et al.3implements layer-level design time scheduling, aiming to strike a
balance between energy and performance trade-offs.

Proposed transformation tool is unique when coupled with CEDR as other
methods fall short in terms of programmer productivity and can not cope
with dynamically arriving workload scenarios

[1] G. Zhong et al. “Synergy: An hw/sw framework for high throughput cnns on embedded heterogeneous soc,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 18, no. 2, pp. 1-23, 2019.

COLLYGE OF ENBINEERING [2] C. Shea et al. “Heterogeneous scheduling of deep neural networks for low-power real-time designs,” ACM Journal on

Elec.trlcal.&Computer Emerging Technologies in Computing Systems (JETC), vol. 15, no. 4, pp. 1-31, 2019.

Engineering [3] I. Dagli et al. “Axonn:energy-aware execution of neural network inference on multi-accelerator heterogeneous
socs,” Proceedings of the 59th ACM/IEEE Design Automation Conference, 2022, pp. 1069-1074.

A

14

Conclusions and Future Work

* For the first time, PyTorch application
developers have access to FPGA-based
execution without having to become
hardware experts

O balance trade-off between
throughput and energy efficiency

O explore SoC configurations for
dynamic workloads

* Next Step

O Generalize the framework for
supporting wide range of ML
models.

COLLEGE OF ENGINEERING
Electrical & Computer
Engineering

A

15

Thank you

A

Questions?
Links

o Website: https://ua-rcl.github.io/projects/cedr/
o Source code: https://github.com/UA-RCL/CEDR/

Contact

o Umut Suluhan: suluhan@arizona.edu

COLLEGE OF ENGINEERING
Electrical & Computer
Engineering

16

A

EEEEEEEEEEEEEEEEEEE

Engineering

BACKUP

17

Results - BACKUP

» Sophisticated schedulers make better scheduling decisions with the
increase in resource pool since it considers execution time of all
processing elements.

10.0 e RR e e
' A EFT
’a 9.5] ETE
; ¢ HEFTRT
£ 9.0
=
c
s 8.5
£
3 8.0
Q
5 751 @
s
7
6.5
[1
C3+V0+Z0 C3+V0+Z1 C3+V1+Z0 C3+V1+Z1
Resource Pool
L]
Scheduler and Resource Design-Space Exploration

Electrical & Computer
Engineering

A

Results - BACKUP

« Rich resource pool enables system to overlap executions of applications leading to faster
execution per instance with the increase in the number of instances running simultaneously.

&
N
w0
"

ETF
HEFTRrT

)
o
=

W
~
w;

W
N
wm

=
o
o
-
>

Avg. execution time / instance.(s)
in
o

\
g
1,

2 4 6 8 10
Instances

Scheduler comparison for increasing number of instances

COLLEGE OF ENGINEERING
Electrical & Computer
Engineering 19

A

